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ABSTRACT 

The rapid increase in attacks on computer systems has made intrusion detection 
systems (IDSs) increasingly popular. An emerging research area involves using mobile 
agents in implementing such systems. The lack of security for mobile agents is a primary 
factor that has inhibited their widespread use in real-world applications, including 
intrusion detection systems. Thus, providing security for mobile agents is key to building 
useful applications based on the mobile agent paradigm. 

The core problem of such an agent-based system is this: an agent's owner cannot trust 
its agent, and mobile agents and their hosts do not trust each other. Worse still, if a host 
is penetrated and the attacker gains access to a traveling agent, he will potentially be 
given a wealth of new information that will help him attack and further penetrate the 
system. If an attacker can obtain detailed knowledge of the detection systems installed at 
a particular site, he will be better able to avoid its triggers. Hence, security for these 
agents is critical. 

The overall intent of this research is to develop a methodology for protecting mobile 
agents in intrusion detection systems and to demonstrate the ability of such agents to 
address the shortcomings in current host-based systems. This methodology will support 
the defense of computer systems through a secure, mobile agent-based architecture. In 
support of this research, a secure mobile agent IDS prototype was created. The 
capabilities of this prototype as well as experimental results are described. 
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ABSTRACT 

Attack Resistant Mobile Agents for Intrusion Detection Systems. (May 2001) 

Jeffrey Wayne Humphries, B.S., United States Air Force Academy; 

M.S., Georgia Institute of Technology 

Chair of Advisory Committee: Dr. Udo W. Pooch 

The rapid increase in attacks on computer systems has made intrusion detection 

systems (JJDSs) increasingly popular in academic, corporate, and government networks. 

While IDSs are not new, research into improving their performance is ongoing. One 

new area involves using mobile agents in implementing intrusion detection systems. 

Research in this area is in its infancy and has not yet entered the mainstream community. 

The lack of security for mobile agents is a primary factor that has inhibited their 

widespread use in real-world applications, including intrusion detection systems. Thus, 

providing security for mobile agents is key to building useful applications based on the 

mobile agent paradigm. 

Before these systems can be deployed in real settings, the major obstacle of providing 

adequate security for the agents themselves must be overcome. The core problem of 

such an agent-based system is this: an agent's owner cannot trust its agent, and agents 

and host systems do not trust each other. Worse still, if a host is penetrated and the 

attacker gains access to a traveling agent, he will potentially be given a wealth of new 



IV 

information that will help him attack other hosts in the network and further penetrate the 

system. If an attacker can obtain detailed knowledge of the detection systems installed 

at a particular site, he will be better able to avoid its triggers. Hence, security for these 

agents is critical. Unfortunately, solutions to many of these problems do not currently 

exist. 

The overall intent of this research is to develop a methodology for protecting mobile 

agents in intrusion detection systems and to demonstrate the ability of such agents to 

address the shortcomings in current host-based systems. This methodology will support 

the defense of computer systems through a secure, mobile agent-based architecture. In 

support of this research, a secure mobile agent EDS prototype was created. The 

capabilities of this prototype as well as experimental results are described. 
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CHAPTER I 

INTRODUCTION 

A. Motivation 

The rapid increase in attacks on computer systems has made intrusion detection 

systems (IDSs) increasingly popular in academic, corporate, and government networks. 

It is estimated that approximately $100 million dollars in sales of IDS systems were 

made in 1998 [1]. While IDSs are not new, research into improving their performance is 

ongoing. One new area involves using mobile agents in implementing intrusion 

detection systems. Research in this area is continuing in many universities and labs, but 

has not yet entered the mainstream community. The lack of security for mobile agents is 

a primary factor that has inhibited their widespread use in real-world applications, 

including intrusion detection systems. Thus, providing security for mobile agents is key 

to building useful applications based on the mobile agent paradigm. 

An intrusion can be defined as "any set of actions that attempt to compromise the 

integrity, confidentiality, or availability of a resource" [2]. Thus, an intrusion detection 

system must identify "unauthorized use, misuse, and abuse of computer systems" [3] in a 

network. A good IDS should run independently of the processes already on a system, 

and should quickly provide information to a system administrator regarding any 

This dissertation follows the style and format of IEEE Transactions on Automatic Control. 



suspicious activity on hosts in the network [4]. Also, an IDS should be well protected 

and resilient to subversion, as it could be the first target of any attack to a system. 

A mobile agent is simply "a program that represents a user in a computer network 

and can migrate autonomously from node to node, to perform some task on behalf of the 

user" [5]. Mobile agents offer several advantages over the more classic client-server and 

peer-to-peer paradigms [6-12]. First, when implemented correctly, they can reduce the 

overall communication traffic in the network. Because a mobile agent doesn't always 

have to stay in contact with its originating host, the number of interactions to carry out 

some action can be reduced. Second, mobile agents have the ability to engage in high- 

bandwidth communication with a server. Since the code that makes up a mobile agent is 

generally much smaller than the data to be operated on, moving the agent instead of the 

data can greatly reduce the communications load among hosts on the network [13]. 

Third, mobile agents allow the user to create specialized services by tailoring agents to a 

specific need. Service customization is a major asset provided by code mobility because 

re-tailored agents can be quickly designed to perform new functions [14-18]. 

Using mobile agents in the intrusion detection domain offers several advantages over 

more traditional methods. Crosbie and Spafford [19] compared these small, lightweight 

agents to current monolithic approaches for IDSs and asserted several advantages. First, 

agents are more easily tailored and can be quickly changed to observe new host 

behaviors. Security experts recommend that networked organizations should regularly 

update their security systems, such as anti-virus and intrusion-detection software [20]. 

As organizations such as the Computer Emergency Response Team (CERT) [21] and 



others find and disseminate information on new vulnerabilities, new agents can be 

written and dispatched to look for these problems on network hosts. Second, agents can 

be very efficient if they are written to be simple and to consume as few system resources 

as possible. These agents can impose a lower overhead on network bandwidth and other 

resources than can some of the current, more centralized approaches to intrusion 

detection. Third, intrusion detection systems using mobile agents are more fault tolerant 

in that the components that makeup the system are moving and are not centrally located. 

The failure of a host does not necessarily interfere with a mobile agent as it can easily 

reroute itself around problems in the network. This makes such systems more resilient 

to subversion. A final advantage of using mobile agents in this domain is that they scale 

well to larger systems. As a network grows larger, more agents can be added to migrate 

through hosts looking for suspicious activity. 

It is clear that using mobile agents for intrusion detection offers many benefits over 

traditional approaches; however, before these systems can be deployed in real settings, 

the major obstacle of providing adequate security for the agents themselves must be 

overcome [22]. The core problem of such an agent-based system is this: an agent owner 

cannot trust its own agents (once they have been dispatched), and agents and the hosts 

they run on do not trust each other (mutual suspicion) [23, 24]. Even in a closed, so- 

called "trusted" environment, these problems are not easily overcome, because there is 

no guarantee that hosts and users are (or will remain) benevolent and cooperative [23]. 

Worse still, if a host is penetrated and the attacker gains access to a traveling agent, he 

will potentially be given a wealth of new information that will help him attack other 



hosts in the network and further penetrate the system. "If an attacker has detailed 

knowledge of the detection systems installed at a particular site, he is better able to avoid 

its triggers. As such, it would be better to deploy an IDS whose triggers are not easily 

analyzable" [25]. Hence, security for these agents is critical. Chess, et al. summarize 

this problem well: "It is difficult to exaggerate the value and importance of security in an 

itinerant agent environment. It is, without a doubt, one of the cornerstone issues" [6]. 

Unfortunately, solutions to many of these problems currently do not exist. 

B. Research Objectives 

The overall intent of this research was to develop a methodology for protecting 

mobile agents in distributed intrusion detection systems and to demonstrate the ability of 

such agents to address the shortcomings in current host-based IDSs. This methodology 

supports the defense of computer systems through a secure, mobile agent-based 

architecture. The following research objectives accomplished this intent: 

•    Research, develop, and apply mechanisms for securing mobile agents in intrusion 

detection systems that: 

o   Ensure agent confidentiality, integrity, and availability through the use of 

cryptographic methods. 

■ The confidentiality of mobile agent code and data will be 

protected during transit between hosts. 

■ The integrity of mobile agent code will be monitored so that any 

changes to an agent will be detected. 



■ The integrity and confidentiality of data collected during an 

agent's lifetime will be ensured so that subsequent hosts cannot 

view this data or make changes without detection. 

■ Unauthorized changes to an agent's itinerary will be detected, 

o   Protect mobile agents from denial-of-service attacks. 

■ Malicious or malfunctioning hosts that attempt to remove or 

suspend agents will be detected. 

■ Various hold-back, checkpointing, and other techniques will be 

used to ensure that agents are not removed from the system except 

by the originator. 

o   Provide authentication of both agents and hosts to prevent spoofing. 

• Measure and compare the capabilities of secure mobile agents. 

• Develop a prototype secure mobile agent system to demonstrate the feasibility of 

this approach. 

C. Overview 

Chapter II presents a survey and review of the current literature that serves as 

background for this research. The purpose of Chapter II is to describe work that has 

been previously done and to provide sufficient background material for this dissertation. 

The domain areas described include mobile agents, intrusion detection, distributed 

systems, computer security, and cryptography. 



Chapter HI describes the proposed methodology for protecting mobile agents in the 

intrusion detection domain. This chapter describes the design of each component used 

in this methodology, with emphasis on the components that have been prototyped. 

Chapter IV provides details of the actual implemented prototype system, including 

the mobile agent infrastructure, the security components, and the algorithms used. It 

also describes the interactions of the system components and how they support the 

methodology. 

Chapter V describes the results of this doctoral research. It describes the performance 

of the overall system and the details of the testing procedures. This chapter also 

describes the experiments used to demonstrate the correctness of the methodology. 

Chapter VI gives a summary and presents the major conclusions of this research. 

This chapter also summarizes the contributions of this work to the field of computer 

science and makes recommendations for future research. 



CHAPTER II 

LITERATURE REVIEW 

A. Overview 

The development of an architecture to secure mobile agents in intrusion detection 

systems borrows ideas from previous work in computer security, mobile agents, 

intrusion detection systems, and distributed systems. While there has been significant 

research in intrusion detection and mobile agents, there has been limited research in 

providing adequate, integrated security for mobile agents in the intrusion detection 

domain that provides agent confidentiality, integrity, and availability. The following 

sections survey significant previous work in these areas and discusses these areas in 

sufficient detail to provide background for this research. 

B. Mobile Agents 

Three basic programming paradigms exist for distributed computing [10]. In the 

client-server paradigm, a server provides some set of services that allows various clients 

in the network to access some system resources as illustrated in Figure la. The code that 

provides these services is located locally on the server; that is, the server holds the 

"know-how" for implementing the services as well as the processor capability to carry 

them out [10]. 

In the code-on-demand paradigm, the client holds the resources needed for execution, 

as well as the processing capability, but may lack the "know-how" to execute its task 
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Figure 1: Client-server and code-on-demand paradigms [10]. 

due to a lack of code [10]. In these instances, another host in the network provides the 

needed code in order to allow the client to proceed with its execution (see Figure lb). 

An example of this paradigm is a Java applet. 

A third programming paradigm is that of the mobile agent. In this paradigm, hosts in 

the network are allowed flexibility to possess any mixture of know-how, access to 

resources, and processing capability [10]. The know-how is not tied to any particular 

host in the network, but is available to any host on the network through mobile agents 

[10]. This paradigm offers much greater flexibility in determining how a network's 

resources and processing capabilities will be utilized. The mobile agent paradigm is 

illustrated in Figure 2. 
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Figure 2: Basic mobile-agent paradigm [10]. 

The mobile agent paradigm is not new. The notion of a mobile agent developed from 

process migration and remote job processing research in the 1970's and mobile 

computing and distributed system research in the 1980's [18]. The pervasive use of 

computers and ubiquitous network interconnectivity, however, has effected a new influx 

in research of agents. This research falls within one of two camps: multi-agent/ 

intelligent systems and mobile agents in distributed systems. The former group of 

researchers focuses primarily on stationary objects that communicate with each other in 

a distributed system in order to perform some common task [26]. The latter group is 

doing research in areas of agent mobility; that is, the ability to autonomously transfer 

code and data between multiple hosts. While the characteristics of what exactly defines 
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a mobile agent vary throughout the literature [27], for purposes of clarity, a mobile agent 

will be defined for this research simply as "a program that represents a user in a 

computer network and can migrate autonomously from node to node, to perform some 

computation on behalf of the user" [5]. 

1.   Mobile Agent Security 

There are several vulnerabilities specific to mobile agent systems [23]. First, they 

have no inherent privacy - their code and data can be viewed by any host that executes 

it. Because an agent must rely on an execution environment in order to run, they have to 

expose themselves at some level to the system. This asymmetric power relationship 

between hosts and agents make agents very vulnerable [28, 29]. 

Second, a host can tamper with an agent's code or data. Just because a host can view 

an agent's data does not mean that it will necessarily change it. Malicious servers, 

however, can tamper with agent code or data in order to change its behavior. Clever 

servers can change an agent to actually do something malicious on its behalf. Malicious 

servers could even make random changes to an agent, knowing that those changes will 

alter the results it obtains or cause it to malfunction in some way. 

Third, a malicious host can execute an agent's code incorrectly or incompletely. 

There is no guarantee that a host will execute an agent's code to completion, or that it 

will execute it at all. A host could execute only selective portions of an agent's code, 

bypassing critical subroutines, in order to cause an agent to obtain incorrect or 

incomplete results. 
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Fourth, an agent can be interrupted or terminated. A server could simply delete an 

agent that it currently hosts. If no mechanisms exist to counter this, the agent would be 

permanently lost. Even benevolent servers might inadvertently delete an agent if they 

are malfunctioning or experience a power loss. 

Fifth, a host can lie about execution results, its own identity, or any other data 

gathered while an agent is on its site. Malicious hosts could give an agent incorrect data, 

knowing that this data will cause the system to incorrectly evaluate some result. 

Sixth, a host can eavesdrop on any agent communication. Servers that are hosting 

agents can intercept and read any communication the agent has with other agents or 

other servers while on its system. This makes the task of securing these communications 

very difficult. 

The reciprocal problem of protecting hosts from malicious agents is well-researched, 

and many technologies exist to address this problem [30]. The most effective 

technology is the sandbox. The basic sandbox model of protection attempts to contain 

mobile code in a special environment such that it can cause no harm to the host outside 

of that environment. The sandbox accomplishes this by placing special restrictions on 

file system and network access. The most common implementation of the sandbox 

model is in the Java interpreter running inside most Internet browsers [30]. The Java 

approach, while not perfect, does an adequate job of protecting hosts from malicious 

agents when implemented correctly. 

Despite all of these potential problems, mobile agents offer many advantages over the 

more classic client-server and peer-to-peer paradigms [6]. These advantages, however, 
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cannot be fully realized in real-world applications until the problem of providing 

adequate security for these mobile agents has been addressed [31]. The following 

sections survey significant previous work in the area of mobile agents security and 

discuss these areas in sufficient detail to provide sufficient background knowledge. 

a. Trusted Environments 

The most common approach for protecting agents is simply to restrict agent migration 

to trusted hosts [32]. In this approach, agents cannot move to hosts that are unknown or 

untrusted. The primary problem with this approach is that it is absolute, in that the 

system either fully trusts a host or it does not, and "it relies on blind-faith that all hosts 

and agents are consistently benign" [23]. This form of protection is not realistic because 

most real-world applications will require agent mobility among unknown or untrusted 

hosts in order to function [33], and it is not always clear whether a host is trusted in 

advance or not [34]. In addition, this approach severely reduces the number of hosts that 

can be visited. One of the primary advantages of using mobile agents is the freedom 

they allow in migrating through open and unknown networks. This advantage would be 

eliminated by assuming trusted hosts because agents could not migrate to unfamiliar or 

newly added hosts. Moreover, even if agents were restricted to fully trusted networks, 

nothing prevents these once trusted hosts from later being subverted. 

b. Reputation Servers 

Another approach to agent protection relies on the ability to detect when a host 

misbehaves. These systems suggest using reputation services [34, 35] that provide 
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information on the trustworthiness of principals, similar to that of the Better Business 

Bureau for business. Before an agent migrates to an unknown host, it looks up the host's 

current reputation based on its past behavior to determine if it is trustworthy. If the host 

appears reputable, the agent proceeds with the migration. On the occasion that a host is 

found to be "misbehaving", it is reported to one of these services where it loses 

reputation because it has not "played by the rules". 

This reputation approach suffers from several problems. First, it provides no real 

protection for the agent, in that only after something damaging has occurred will future 

agents be aware of potential problems. Second, hosts could be subject to "character 

assassination" attacks [34], where agents maliciously complain about a host to damage 

its reputation even though it has done nothing wrong. Third, it is not always possible to 

detect when a host has misbehaved, or even to classify the type or severity of damage 

inflicted by a malicious host. 

c.   Legal or Contractual Protection 

Another non-technical approach to protecting agents is through legal or contractual 

means [32]. Agent servers promise, usually through some contractual arrangement, that 

they will not violate the privacy of agent code or data and that they will not interfere 

with an agent's computation [32]. This approach requires no additional technical 

mechanisms in order to secure agents as they migrate. 

These arrangements, however, suffer from several major problems [32]. First, an 

agent owner must be able to detect when a host has breached its contract in order for this 

system to be feasible. This is difficult to do without additional technical mechanisms 
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included with each agent. Second, even if an owner could detect that an agent contract 

was violated, it must be able to prove through some non-repudiable evidence which host 

violated the contract. Third, agent owners must have some legal or other remedy 

available in which to penalize hosts that tamper with agents. This is difficult to do 

across administrative domains where no legal protections exist. 

d.   Execution Tracing 

Vigna [36] suggests an approach that allows an agent's owner to detect if an agent 

has been modified and to prove which host performed the act. Vigna has proposed 

cryptographic traces of all computations performed by a mobile agent as it visits each 

host. The execution of an agent is recorded in such a manner that it cannot be forged by 

the host [36]. Each host must maintain logs of the operations performed by each agent 

while resident. Using cryptographic hashes of these traces, agent owners who suspect 

foul-play can request these logs which can verify whether an agent has been tampered 

with or not. The owner may then "use legal or organizational ways to get its damage 

refunded" [34]. 

This method of agent protection is exploratory and all "current approaches are very 

theoretical" [32]. In addition, manual verification of these logs "is an expensive process, 

which is likely to be inefficient and error-prone" [37]. In addition, the size and number 

of logs that must be maintained in a large system with many hosts and many agents is 

enormous [38]. These limitations greatly restrict the feasibility of this approach in any 

real-world mobile agent system. 
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e.   Software Assertions 

Software assertions are functions, usually evaluating to true or false, whose value is 

based on some semantic condition of a program's state. They have been used in the past 

in software testing, fault detection, and program correctness research. Software 

assertions have been proposed as a means of protecting agents by providing agent 

owners with snapshots of an agent's state as it migrates [23]. Using these snapshots, an 

agent owner can determine if an agent's results should be trusted. 

Embedding protective assertions into agents is a complicated process. First, the 

agent owner has to employ some form of fault injection which attempts to identify 

weaknesses in an agent by simulating potential malicious behavior by a future host. The 

fault injection analysis then recommends which software assertions are best suited to 

protect the agent from discovered weaknesses [23]. Next, the agent owner must 

manually structure the software assertions for each agent and specify where the 

assertions should be embedded in the code. The owner must also specify what 

information is indicative of untrustworthy data returned from an agent. Following this 

process, a parsing tool inserts the assertions into the agent's source code. Finally, an 

analysis oracle is generated which runs on a specified machine and is responsible for 

collecting the results from agent assertions and analyzing the results. As an agent 

executes on a host, the results from each assertion is sent to the oracle for analysis. The 

oracle then informs the agent owner if it detected any unusual results. 

The authors of this approach admit that it is not foolproof and describe several 

shortcomings [23]. First, software assertions still do not prevent a malicious host from 
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tampering with agents, removing assertions, or giving false information. Second, this 

approach involves additional overhead because all intermediate results must be shipped 

off to the oracle during each execution on every host. Another criticism is that the 

process of determining which assertions are needed and embedding them into the agents 

can be tedious and slow for a human operator. 

f.   Mobile Cryptography (Computing with Encrypted Functions) 

Sander and Tschudin describe an approach to protect agent code from malicious hosts 

by using encrypted functions [39]. Their method uses encrypted programs that can be 

run on a foreign host without being decrypted [40]. As Figure 3 illustrates, this approach 

allows a host to execute an agent program embodying some encrypted function without 

the host being able to determine what the original function is. In other words, a function 

is transformed (encrypted) into another function which hides the original functionality, 

and this encrypted function is then implemented as a program that can be executed by an 

agent server [41]. An agent server can plainly see and execute these functions, but has 

no way of obtaining the original functionality. 

So far, they have only been successful in using this approach with polynomial and 

rational functions. The major drawback is that no known methods exist in which 

arbitrary functions can be transformed into encrypted forms for use in mobile agents. 

Even if this did work, it would be a dubious prospect to require hosts to allow an agent 

to execute arbitrary encrypted functions. Also, while this technique could be powerful if 
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(1) Alice encrypts/. 
(2) Alice create a program P(E(fl) which implements E(f). 
(3) Alice sends P(E(f)) to Bob. 
(4) Bob executes P(E(f)) at x. 
(5) Bob sends P(E(F))(x) to Alice. 
(6) Alice decrypts P(E(F))(x) and obtains/^. 

Alice 6 
fix) _ E(f)(x) 

1 
2 5 
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■ ' ' '          ' 4 
P(f)(x) W/))W < -   X 

Figure 3: Computing with encrypted functions [39]. 

extended to use with arbitrary programs, agents are still vulnerable to denial of service 

attacks, replay, and experimental extraction [38]. 

g.   Obfuscated Code 

Hohl suggests an approach called "time limited blackbox protection" [34] in which 

agent code is scrambled (not encrypted) in such a way that it makes its function very 

difficult to understand by a third party (see Figure 4). Even though the code remains 

readable, its structure, variable names, and control flow are so jumbled, that it would 

take someone a long period of time to decipher what the program is doing. In Hohl's 
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approach, he suggests using this method when the code is not intended for long-term 

concealment, as obfuscation does not carry the same time protections as encryption does. 

There are several problems with this approach. First, it is impossible to determine the 

relationship between the amount of code scrambling and the amount of time protection it 

affords. This is especially important as many attacks are automated and a computer 

would require much less analysis time than a human. Second, there are no known 

algorithms that can take arbitrary code and scramble it for time protection of a given 

length [38]. Thus, it is impossible to say that a given amount of obfuscation results in a 

specified amount of protection. 

if   (a(b)   <  c)   { 
b =  s(d(e)   +  f); 

} 

Original Code 

Obfuscated Code 

z   =   0; 
DO 

if   (z = 0)   then tl=a(b);z=l;continue; 
if   (z=l)   then  t2=tl<c;z=2;continue; 
if   (t2)   then  t3=d(e);z=3;continue; 
if   (z=3)   then  t4=t3+f;z=4;continue; 
if   (z=4)   then b=t4;z=5;continue; 
if   (z=5)   then break; 

LOOP 

Figure 4: Code obfuscation [34]. 
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h.   Partial Result Encapsulation 

Another approach used to protect agents is called partial result encapsulation, where 

results of an agent's actions are cryptographically encapsulated before leaving each host. 

When an agent returns to its point of origin, or possibly some intermediate point, the 

data can be retrieved and verified in order to detect any modifications. With this 

method, agents can ask each host to sign new data and to append this (possibly 

encrypted) information to the agent before the agent moves to another host. If 

performed correctly, a malicious host will not be able to modify or view the signed data 

"because it cannot forge the signatures of other hosts" without access to private keying 

material [28]. This method is very useful in preventing potentially malicious hosts, 

which always have total access to a mobile agent's state, "from corrupting any partial 

results computed while the agent was at a previous host" [32, 42]. The downside of this 

method is that an agent that encrypts its data for privacy will not be able to use that data 

in any decision making until it returns to its original host. This is not necessarily bad, 

because many applications do not require use of intermediate data in order for their 

agents to function properly. Another disadvantage is that the size of the agent's data 

grows linearly with the number of hosts in an agent's itinerary. 

A different method of encapsulating partial results is for an agent, just prior to 

migrating to another host, to encapsulate the results generated on the current host and 

ship them back in a message to the agent originator [6]. In this stateless scheme, data is 

never kept with the agent itself, but is always kept at the owner's site. The primary 

benefit of this approach is the immediate acquisition of knowledge of all intermediate 
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operations by an agent. The originator would not have to wait for an agent to return 

from its completed route before learning about its results. There are two primary 

disadvantages to this approach, however. First, this scheme greatly increases the amount 

of communication and bandwidth used on the network. Second, this scheme destroys 

the basic idea of autonomous agents - they should require little-to-no interaction with 

the agent owner during their operation. In addition, this method would preclude the 

possibility of an agent going off-line [23]. This scheme basically degrades to a form of 

client/server and thus loses the advantages of using mobile agents in the first place. 

i.   Itinerary Protection 

Several approaches have been suggested for dealing with mobile agent itineraries [5, 

41,43]. One approach constructs an ordered sequence of sites to visit and loads this 

itinerary into the agent. "The agent uses this list to sequentially move from site to site" 

[44] through the network until it reaches its destination, usually the same as its origin. In 

this approach, the agent originator is responsible for determining the circuit for an agent 

before it begins migrating around the system [32]. 

In another approach, the itinerary is determined as the agent migrates, based on 

decisions it makes on its journey. While this approach allows more flexibility in agent 

movement, it is harder to protect these agents from being hijacked. No feasible scheme 

currently exists for protecting itineraries in this form. 

A third approach maintains a "secure, verifiable audit trail which records the actual 

path followed by the agent" [41]. All major operations and sites visited are recorded 

during migration and encryption mechanisms are applied to protect the logs from 
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tampering [45]. When an agent reaches its final destination, the audit trail is examined 

to see where the agent has been. Any discrepancies or indications of tampering would 

then result in further action by the agent owner. 

j.   Clone Detection 

An agent server can easily make copies of mobile agents that migrate to its site. A 

malicious server might do so in order to cause confusion for the agent system, or a host 

might inadvertently inject a copy of an agent into the network because of some faulty 

behavior. Multiple cloned agents would make it impossible to authenticate the original 

from the clone and might lead to multiple executions of the same agent [46]. Thus, the 

ability to detect agent clones would be beneficial to maintaining the security of a mobile 

agent system. 

Baek [47] proposed one method of detecting agent clones and identifying which 

agent server generated them. In his method, a centralized coordinator executes a 

complex and detailed clone detection algorithm. Agent servers send this coordinator 

messages regarding an agent that it is currently hosting. The coordinator determines if 

any clones are present by examining the messages from all the agent servers. The agent 

server with a legitimate mobile agent receives a message back from the coordinator 

indicating that it can execute the agent. All clone agents receive messages that stop their 

execution. 

This scheme suffers from several problems, the most obvious being that all agent 

interactions, to include agent creation, execution, movement, and destruction, must be 

pre-coordinated through the coordinator. This could be a major bottleneck in the system, 
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as well as a single point of failure. Likewise, the scheme assumes that the agent 

coordinator is always trustworthy and that all communications are secure [47], which is 

probably not a good assumption to make in a real-world network. 

k.   Fault-tolerance 

Schneider [48] presents a fault-tolerant approach that attempts to deal with the 

effects of faulty hosts by replicating the agent at each visited site. The agent visits 

multiple hosts and each host sends the agent's output to every subsequent host to be 

visited where voting occurs to mask the effect of faulty hosts [37]. This approach uses 

significant bandwidth since every host must be notified of an agent's actions. In 

addition, this method cannot detect which hosts are faulty, only that a fault occurred 

somewhere in the network. 

Another fault-tolerant approach has been proposed which "dispatches two identical 

agents to a known set of host systems, where one traverses the systems in one direction 

and the other agent does the reverse" [32]. The agent owner then compares the results of 

each agent when it returns to its originating host. Based on the comparison, the agent 

owner can pinpoint if a malicious host made an incorrect entry into an agent's data store. 

This approach can waste bandwidth and "the author of this approach acknowledged that 

this approach is only successful in detecting at most one malicious system" [37]. 

Another approach is to flood a system with agents at different entry points into the 

network and hope that one makes it successfully. This is a waste of bandwidth and 

offers no guarantees of working [37]. 
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2.   Example Mobile Agent Systems 

With both industry and academia sponsoring active research in the area of mobile 

agents, many systems based on this paradigm have been developed over the past decade. 

These systems were designed to be integrated into any application domain that might 

benefit from using mobile agents. The subsequent sections give background information 

on the most popular and interesting mobile agent-based systems developed to date. 

a.   Telescript 

Telescript, developed by General Magic in the early 1990s, was the first system 

designed for building distributed applications using fully mobile agents [49]. The intent 

was to use Telescript to build an "electronic marketplace" [49] in which producers and 

consumers of many types of goods and services could do business remotely over the 

Internet. Although the system did not succeed commercially, it became the system from 

which many other mobile agent-based architectures were subsequently developed. 

The system had three major components: a specialized programming language with 

which to program agents, interpreters running on each host that could interpret this 

language, and communications protocols that allowed agents to move between hosts. 

The Telescript language was object-oriented and was portable among hosts with 

Telescript engines. The major communications components of the system were 

implemented in this language while application portions of each agent could be written 

in C or C++. Interpreter engines were located on each host that allowed agents written 

in this specialized language to be executed. These engines also implemented protocols 
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that enabled the packaging and transporting of agents to other hosts using high-level 

instructions by the programmer. 

Telescript had limited security mechanisms. The only security features to protect 

agents themselves were very limited forms of authentication and encryption used only 

during agent transfer to prevent eavesdropping [50]. Since most of Telescript's security 

features were discretionary, there was always a risk of a programmer failing to correctly 

use them. Also, since Telescript assumed that all machines were trustworthy [51], 

agents did not have to be authenticated on each move [50], providing opportunities for 

spoofing, Trojan horses, and other attacks. 

Even though Telescript was the first commercial mobile agent system, it failed to 

gain market share because the proprietary language was difficult to learn and the 

network architecture was difficult to integrate. General Magic subsequently re- 

implemented its original ideas on mobile agents in a Java-based product called Odyssey. 

Developers can use Odyssey's Java class library to create mobile agent applications for 

their particular domain. The security concerns for Telescript, however, also remain for 

Odyssey. 

b.   D'Agents (Agent Tel) 

D' Agents, formerly known as Agent Tel, is a mobile agent system developed at 

Dartmouth College in which agents are written using Tel scripts, Java, or Scheme [51, 

52]. The primary component of a D'Agents system is an agent server that runs on each 

host that supports an interpreted execution environment for mobile agents as they travel 

through the network. D'Agents also implements a high-level inter-agent 
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communication protocol similar to RPC that enables agents to pass messages to each 

other through a procedure call abstraction or by setting up a streaming connection [52]. 

D'Agents security focus is on protecting machines from malicious agents, not 

protecting agents from malicious machines [52]. While D'Agents provides no built-in 

mechanisms for protecting agents, it does call an external cryptographic tool, Pretty 

Good Privacy (PGP), to perform authentication checks and for encrypting data in transit. 

It is not required, however, that an agent's identity be re-verified at each stop [53] 

because D'Agents servers are typically configured so that all hosts under a single 

administrative domain trust each other [51]. Gray et al. also detail several other 

weaknesses of the system's authentication scheme, including serious vulnerabilities to 

replay attacks [51]. In addition to these shortcomings, no means exist of ensuring 

availability and fault tolerance of agents should they become lost or intentionally 

destroyed. If a host goes down while an agent is executing, the agent is lost [52]. 

c.   Mole 

Mole, developed in 1994 at Stuttgart University in Germany, was the first mobile 

agent system that was developed using the Java programming language [54]. In Mole, 

agents are active entities, which move from place to place in order to rendezvous with 

other agents and to access various host services. Mole implements agents as multi- 

threaded objects where both agent code and data are transferred during migration. Mole 

also addresses agent-to-agent communication by supporting both message passing and 

remote method invocations (RMI). 
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Mole addresses the protection of its agents by implementing a 'blackbox' [34] out of 

an agent using algorithms to obfuscate the agent's code, making it hard to understand 

[54]. These techniques offer no guarantee of agent protection because the degree of 

security is not quantifiable. The authors of Mole identify other mechanisms that could 

be used to afford better protection for their agents, but none of these techniques are 

implemented. 

d.   Ara (Agents for Remote Action) 

Ara [55], developed at the University of Kaiserslautern, is a multi-language system 

that has recently added support for Java-based mobile agents. Ara depends on an altered 

implementation of the Java Virtual Machine (JVM) running on each of its UNIX 

platforms. By altering the JVM, Ara supports transparent continuation of an agent at 

any arbitrary point of execution after a migration, thus fully preserving agent state. Ara 

also implements a form of agent communication based on the client/server style of 

interaction, but leaves the actual choice of communication language open to the 

developer. 

Ara addresses some of the basic issues of agent protection using well-known public 

key cryptographic primitives. Agents can be optionally encrypted during migration to 

protect them from eavesdropping. In addition, the Ara developers suggest the possibility 

of future security measures to provide authentication, but none of these mechanisms are 

currently implemented. 
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e. Aglets 

Aglets are mobile agents developed by IBM running on a Java-based system [56]. 

Like other mobile object systems, agents migrate between agent servers located on each 

host in the network. Since the agents are written in Java, thread-level execution state 

cannot be saved between migrations. Therefore, Aglets use an event-based scheme in 

which specific methods are invoked when certain events occur in its life cycle. For 

example, before an agent leaves a server for another host, the onDispatching() method 

will be called which handles all the details of removing the agent from its current context 

and inserting it into its destination context [56]. 

While providing interesting solutions to protecting hosts from malicious agents, 

Aglets currently have very limited support for the security of agents against malicious 

hosts. Karjoth et al. briefly describe possible attacks on its system, including 

eavesdropping, replay, masquerade, and repudiation attacks [56]. Their current 

implementation, however, does not address these agent protection issues [56], instead 

leaving room to possibly build these mechanisms in future versions of the system. 

f. TACOMA 

The TACOMA project [57], another mobile agent system from the early 1990s, 

focused primarily on operating system support for agents. Agents are implemented 

using Tel and each site on the network runs a Tel interpreter on which agents may 

execute. Because agents are written with scripts, thread-level state cannot be saved 

when an agent migrates; therefore, all agents restart their programs when they arrive at 

another host. 
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TACOMA almost completely ignored the need for security, so no security 

mechanisms were implemented. It did, however, provide hooks so that agent authors 

could add their own cryptographic subsystems [51]. The TACOMA team also included 

a rudimentary form of fault tolerance for its agents, using a combination of 

checkpointing and rear-guards for tracking mobile agents as they migrated [57]. This 

provided the limited ability to generate a new agent in cases where a failure caused a 

previous agent to disappear from the system. 

g.   Concordia 

Concordia is an agent-based framework that supports developing and executing 

mobile agents written in Java [53, 58]. An Agent Manager on each host provides the 

execution environment for agents as well as the basic mobility mechanisms necessary to 

send and receive agents. Concordia provides inter-agent communication based on either 

distributed events or agent collaboration [53]. 

While Concordia provides many useful mechanisms for supporting the mobility of its 

agents and inter-agent communication, the security support is limited. Concordia does 

protect its agents in transit by encrypting and authenticating them using Secure Sockets 

Layer (SSL) encryption [59, 60]. The system also protects persistent agents that are 

waiting on disk through a variety of encryption techniques. Concordia assumes that its 

servers are trusted, so once an agent reaches a Concordia server, no protections are in 

place to protect an agent while present in memory from a malicious host [53]. 

Concordia provides a reliable queuing mechanism to ensure reliable agent mobility 

between host pairs, however this mechanism does not ensure global availability of 
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agents as they traverse the network [53]. For example, if an agent disappears while 

executing on a host, no system-wide mechanisms exist for regenerating the agent. 

h.   Ajanta 

Ajanta is a Java-based system developed at the University of Minnesota in which 

Java's serialization features are used for agent state capture before migration [5]. Ajanta 

contains the basic mechanisms any mobile agent system needs, but differs somewhat 

from other systems in the structure of its agents. The code an agent may need is not 

carried along with the agent, but rather code is loaded on demand from an agent- 

specified server [41]. Communication between agents is achieved using Java's Remote 

Method Invocation (RMI) facilities. 

Ajanta provides limited mechanisms for protecting privacy and authenticating agents 

during migration, but, does not address the issues of agent availability, regeneration in 

case of loss, or the prevention of denial-of-service attacks against agents [41]. 

3.   Mobile Agent Communications 

Mobile agents may need to interact with other components in an agent-based system 

in order to successfully complete their tasks. Agents must have some mechanism in 

which to interact with their local execution environment, with other agents, and with 

other application components in the network [61]. The models of agent-based 

coordination can be classified based on temporal and spatial coupling [62]. In spatial 

coupling, agents and other system components "must share a common name space in 

order to communicate" [62]. That is, an entity must know the name of the other entity to 
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which it wishes to communicate. In temporal coupling, communication is based on 

whether the sender and receiver of any communication must both exist at the time the 

actual communication takes place [62]. Temporally coupled communication models are, 

by definition, synchronous. This basic taxonomy of mobile agent communication is 

shown in Figure 5. 

Direct communication is both spatially and temporally coupled. Entities send 

messages directly to one another. Recipients of any communication must exist prior to 

the communication and senders must know the name of the receiver. While most current 

client-server systems use this model for communications, it is not well-suited for mobile 
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Figure 5: Mobile agent communication taxonomy [62]. 
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agent communication for two reasons. First, since components are mobile, a message 

sender may not know the location of the receiver at the time of communication. In 

addition, if agents are created dynamically, it may be difficult to determine which agents 

exist at any given time [62]. 

Meeting-oriented communication models are temporally coupled, but spatially 

uncoupled. An agent does not necessarily have to know the name of the intended 

recipient of it communication. Instead, agents join at predetermined meeting points 

where they communicate with other entities in the system. However, all parties must 

pre-exist for any synchronization and communication to take place [62]. 

Blackboard-based models are temporally uncoupled, but spatially coupled. These 

systems rely on a repository to store and retrieve messages. In this model, the sender 

leaves a message in the blackboard where the receiver can retrieve it at some subsequent 

time [62]. Because messages are left in the blackboard, there is no need for the sender 

and the receiver to exist at the time of the communication. This model is well-suited for 

"a highly dynamic environment, such as the Internet, where it is very difficult to know 

the presence and the location of a given agent" [62]. This is the model that was chosen 

for this research, for reasons indicated in Chapter m. 

The fourth coordination model is named "Linda-like" by the authors of the taxonomy 

after the Linda parallel programming language [62]. This model is fully uncoupled, both 

spatially and temporally. Similarly to the blackboard-based model, a repository exists 

for the storage and retrieval of messages. In this model, however, the messages are not 

addressed to a particular recipient. Instead, entities retrieve messages using Linda-like 



32 

tuples in which a pattern matching mechanism permits an agent "to retrieve a message 

by specifying only few parts of the message itself [62]. 

C. Intrusion Detection Systems 

The goal of any intrusion detection system is to identify that an intrusion has been 

attempted, is currently underway, or has occurred in the past [63]. This usually involves 

some form of dynamic monitoring of the actions that are taken in a system and deciding 

whether those actions are indicative of an attack [64]. In order to perform this function, 

intrusion detection systems need some knowledge-base of known attacks, information on 

the current state of the system being monitored, and audit information that describes the 

events that have occurred in that system [64]. Based on this information, two significant 

questions arise: "what data should be collected and where should the analysis of this data 

be accomplished" [65]. Different systems answer these questions in different ways. 

Intrusion detection systems, however, are not a cure-all for computer security. As 

systems grow and become more connected, the straightforward task of even noticing a 

penetration or penetration attempt becomes increasingly difficult. Often times, intrusion 

detection systems cannot distinguish between events that can be considered normal and 

those events that indicate intrusive behavior [66]. These systems are vulnerable to 

mistakenly characterizing normal behaviors as attacks, to missing attacks altogether, to 

being disabled, and to incomplete or incorrect knowledge about what should be 

considered an attack [67]. The sheer quantity of information itself needed to monitor a 

network frustrates an intrusion detection system's ability to rapidly identify problems. In 
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addition, like many other security mechanisms, intrusion detection systems have a very 

difficult time dealing with the insider threat. 

1.   Agent-Based Intrusion Detection Systems 

Much of the research currently ongoing in the field of mobile agent-based intrusion 

detection systems focuses on either mobile agents or intrusion detection, with little work 

on integrating these two into one seamless system. To be successful, both areas need to 

be examined together to identify issues that can only be addressed in an integrated 

system. While the types and categories for intrusion detection systems are many and 

varied, this section describes the previous research that has been done in the area of host- 

based intrusion detection systems that have some agent components (whether mobile or 

not). Currently, only a few systems have been proposed that approximate this approach. 

A survey of these systems follows. 

a.   AAFID (Autonomous Agents for Intrusion Detection) 

Purdue University has proposed an architecture called AAFID (Autonomous Agents 

for Intrusion Detection) for building intrusion detection systems that use agents 

organized in a hierarchical fashion for data collection and analysis [68]. The system 

architecture is built around three primary components: agents, transceivers, and 

monitors. 

An agent is an entity that constantly monitors activity for a specific host on which it 

resides and "reports abnormal or interesting behavior" to a higher-level entity, a 

transceiver [68]. For example, an agent could be looking for a large number of login 
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failures. If some threshold is reached, the agent would report the activity to its 

corresponding transceiver for action. Agents themselves cannot generate an alarm, but 

instead rely on a transceiver or monitor to generate an alarm based on their more 

complete knowledge of the system. As transceivers combine the different reports from 

the various agents on the host that report to it, it builds a picture of host-level activity for 

the specific maphine it is monitoring [68]. All communication between AAFTD agents is 

done through a transceiver, which filters the information and decides what to do with it 

based on how the agents on the host are configured [68]. Agents can have any 

functionality the system developers desire - some can be written as simple monitors for 

certain activities and others can be more complex entities that do analysis on a set of 

observations. While agents can be updated or added to the system, agents are not mobile 

once they have been dispatched to a host transceiver [1]. 

Transceivers are located on each host in the network and provide oversight of all 

agents running on its host. They give local commands to agents on their host and also 

perform data reduction on the information provided by the agents. Since transceivers 

reside on all hosts that need to be monitored in the network, they can serve as external 

interfaces between hosts in the system. Transceivers respond to commands issued by 

higher-level monitors and also provide these monitors with information provided by 

agents about host activity as necessary. 

Monitors are high-level entities that have access to network-wide data to provide 

system-wide command and control of the other entities. The functionality of monitors 

and transceivers is similar. The main difference between the two entities is that monitors 
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control entities residing on several different hosts, whereas transceivers control only 

agents residing on a single host [68]. Monitors have the ability to detect events that 

might not be detected by agents or transceivers, such as suspicious behavior among 

several hosts. Monitors can themselves be organized hierarchically, to reduce the 

amount of data to be processed and to provide for increased scalability. Higher-level 

monitors communicate with the user interface to provide feedback on the system and to 

obtain command and control information from the user. 

While acknowledging that security should be provided for its stationary agents, no 

mechanisms are in place to provide for agent protection. Also, the system developers 

understand the need for security in the communications components of the system, but 

no encryption or authentication mechanisms are currently implemented, making the 

system vulnerable to many types of attack. Adding security features to this system has 

been noted as future work. 

b.   Hummingbird 

The University of Idaho has developed a prototype IDS called the Hummingbird 

System [69]. The system attempts to address many of the issues involved in detecting 

intrusions on networks whose sites span across domains that are not under a central 

authority. Hummingbird is a prototype distributed system built for managing misuse 

data to support this form of cooperative intrusion detection across multiple domains [69, 

70]. 

In Hummingbird, an agent is assigned to a host or set of hosts and communicates with 

other such agents in a peer relationship located on different machines in the network. A 
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group of manager entities also exist which are responsible for transmitting commands to 

other managers and to their subordinates. Agent communication is not restricted to 

entities just within its local domain, but can also communicate with entities on hosts that 

reside in other domains. Agents continuously collect data on host activity and perform 

simple filtering for both data reduction and data sanitization. Individual agents make 

decisions on whether to share data they have collected based on their own locally 

controlled policies on trust, information flow, and cooperation between entities [69]. All 

communication between agents is encrypted and authenticated using the Kerberos 

system [71]. Hummingbird does not provide autonomy nor mobility to its agents, nor 

does it address issues of agent availability or prevention of denial-of-service attacks. 

Hummingbird does, however, offer some unique mechanisms for distributed data 

sharing across administrative domains that might be useful in a mobile agent-based 

intrusion detection system. 

c.   Intelligent Agents for Intrusion Detection 

A project at Iowa State University is based on intelligent agents for intrusion 

detection [72]. It proposes an artificially-intelligent design and architecture for an IDS 

built from distributed components that use data mining techniques to monitor system 

activity. This system offers no mechanisms to quickly tailor, specialize, or change its 

agents once they are in place. In addition, it would not be fielded as a real system 

because of its lack of security for its components. Security is not addressed in their 

research and no form of agent protection is provided. It appears that all of the 
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components of this system are vulnerable to attack. Adding protection mechanisms 

would greatly enhance the viability of using this system in a real-world setting. 

d.   Intrusion Detection Agent System 

The Information-technology Protection Agency (IPA) in Japan is working on a 

project called the Intrusion Detection Agent system (IDA) [73]. IDA has two 

characteristics that are uncommon in most conventional IDSs. First, it uses mobile agent 

mechanisms for tracing the origin of intrusions among various hosts in the system. 

Second, its mechanisms for watching for suspicious behavior are based on watching for 

specific events that relate to possible intrusions, rather than analyzing all user activities. 

If a suspicious event is detected, mobile agents collect information related to the event in 

order to determine its origin. 

IDA deploys sensors on each host to monitor system logs in search of activity that 

may be indicative of an intrusion. If such activity is found, the sensors send information 

to a manager which is responsible for determining if an intrusion has actually occurred. 

If a manager makes a positive determination, it will dispatch a series of agents in an 

attempt to gather more information on the suspected intrusion and to trace the intrusion 

through the network. 

IDA employs two types of agents: one to trace the path of a suspected intrusion back 

to its point of origin and one to collect information on possible intrusions. When a 

sensor reports an indicator of possible intrusion to a manager, the manager first 

dispatches a mobile tracing agent to autonomously trace the intrusion from host to host 

back towards its point of origin. As it migrates, the tracing agent activates an 
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information-gathering agent for each host it visits. Instead of each host sending its 

logging information back to a central server, and thus using massive amounts of 

bandwidth, these information-gathering agents collect information related only to the 

suspected intrusion and then move to a manager where its data is analyzed. As all of the 

tracing and information-gathering agents collect information, they send it to a common 

bulletin board where all system entities can get a system-wide view of what is 

happening. The manager would then make a determination whether an intrusion actually 

occurred by evaluating information in the bulletin board [73]. 

IDA is being implemented using D'Agents, which means its agents have all the 

vulnerabilities previously mentioned for this mobile agent system. While the use of 

mobile agents in this IDS are novel and interesting, IDA would benefit greatly if security 

mechanisms were added to protect its agents. 

e.   EMERALD   (Event   Monitoring   Enabling   Responses   to   Anomalous   Live 

Disturbances) 

EMERALD is a distributed intrusion detection system developed by SRI 

International that uses "distributed, independently tunable, surveillance and response 

monitors" as its primary component [74]. These monitors, similar to agents, analyze and 

respond to malicious attacks on local hosts. They also support the EMERALD 

framework for coordinating host analyses enabling the system to better detect network- 

wide attacks. 

While EMERALD'S service monitors are dynamically deployable, they remain 

stationary once they are dispatched. Thus, these components cannot be considered 
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mobile agents. EMERALD does, however offer some novel approaches to network- 

wide surveillance that can be applied to other intrusion detection systems which are 

based on mobile agent architectures. 

The only security requirements included in EMERALD involve its messaging 

system. Messages between monitors and other components in the system can be 

protected using pluggable transport modules [74] to ensure communication security, 

integrity, and reliability. 

D. Cryptography 

The cryptographic algorithms underlying many of the protection mechanisms used in 

this system have been well researched for many years. The issues of providing 

confidentiality, integrity and authenticity for mobile agents can be addressed by using a 

combination of these techniques. 

1.   Encryption 

A number of cryptographic algorithms can be used in order to provide confidentiality 

for information that must navigate an insecure network. All modern algorithms use a 

mathematical function for both encryption and decryption, in which the function relies 

on some key or set of keys in its operation. These key-based algorithms are classified as 

either symmetric or asymmetric based on how the keys are used to encrypt and decrypt 

information. 

In symmetric key algorithms, the key used to encrypt data is the same key used to 

decrypt data. In cryptosystems based on symmetric algorithms, the sender and receiver 
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must agree on a key prior to any secure communication. The key must remain secret 

from any third party as long as the communication must remain secret. Figure 6 

illustrates this process. 

Symmetric key algorithms can be classified into two categories based on how the 

algorithm processes data to be encrypted. Stream ciphers encrypt data one bit (or byte) 

at a time. Stream ciphers are often implemented in hardware because they are efficient 

in silicon. Such hardware implementations are often found in digital communications 

equipment because bits can be encrypted as they go by [75] and they have no error 

propagation [76]. Block ciphers encrypt data in groups of bits called blocks. Block 

ciphers are often implemented in software because they avoid time-consuming bit 

operations and they more easily operate in computer-sized blocks of data [75]. 

Asymmetric algorithms, commonly referred to as public-key algorithms, use a pair of 

keys: one key is used for encryption and another is used for decryption [77]. These 

algorithms are based on the theory that the decryption key cannot be calculated from the 

encryption key in any reasonable amount of time. The encryption key can be made 

public and thus is called a public key. The decryption key is kept private and is only 

known by the owner. Thus, anyone can send a person a secret message by using the 

receiver's public key to encrypt the message. Only the receiver with the corresponding 

private key will be able to decrypt and read the message. Figure 6 illustrates a typical 

public key algorithm. 
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Figure 6: Symmetric and asymmetric cryptography. 

2.   Digital Signatures, Integrity, and Authentication 

Public key algorithms can also be used to produce digital signatures. If a message is 

encrypted with the sender's private key, then the recipient of the message can ensure that 

the message came from the correct person because only the sender's public key decrypts 

it. Using a public key algorithm in this manner provides an excellent means of 

authenticating messages. 

A cryptographic primitive central to public key cryptography is the one-way function. 

One-way functions have a unique property: they are easy to compute, but are 
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significantly difficult to reverse. In other words, given some value x, it is easy to 

compute fix), but given fix), it is computationally infeasible to compute x [75, 76]. 

A special form of a one-way function is the one-way hash function, also commonly 

referred to as a message digest, cryptographic checksum, or message integrity check. A 

simple hash function takes a variable length input, sometimes referred to as the pre- 

image, and converts it to a fixed-length output called the hash value [75]. A one-way 

hash function is a hash function that only works in one direction; that is, it is easy to 

compute the hash value from the input string, but computationally difficult to generate 

an input string that hashes to a particular hash value. A good one-way hash function that 

is suitable for use in cryptographic protocols should be collision resistant, meaning that 

it is computationally infeasible to generate two different input strings which hash to the 

same output [76]. 

A commonly used one-way hash function algorithm is the Secure Hash Algorithm 

(SHA-1). The SHA-1 takes a message of any length less than 264 bits as input, and 

produces a 160-bit message digest as output [78]. The SHA-1 is considered secure 

because it is computationally infeasible to recover the message corresponding to a given 

message digest, or to find two different messages which produce the same digest [75]. 

The SHA-1 is effective because any change to a message will result in a significantly 

different corresponding message digest causing the verification of the signature to fail. 

The SHA-1 is based on a similar algorithm for generating message digests, MD4 [76], 

but provides increased security against brute-force attacks since it produces a 160-bit 

digest compared to MD4's 128-bit output. 
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A variant of the one-way hash function is the message authentication code (MAC), 

also known as a cryptographic checksum. A MAC is simply a one-way hash function 

with the addition of a secret key [75]. The purpose of a MAC is to provide assurances 

about both the source of a message and its integrity [76]. The MAC value is a function 

of the input string and a secret key. Only persons with knowledge of the secret key can 

verify the hash value. 

This technique assumes that two parties that want to communicate, say X and Y, 

share knowledge of a secret key Sk. If X wants to send a message to Y, it will calculate 

the MAC as a function of the message M and the secret key. The message and the MAC 

are then transmitted to Y. Recipient Y then performs the same calculation on the 

message that was received and compares the received MAC to the newly calculated one. 

If only X and Y have knowledge of the secret key, then the receiver is assured that the 

message was not altered and that the message was indeed sent by the alleged sender 

[78]. 
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CHAPTER III 

DESIGN 

A. Proposed Methodology 

The overall intent of this research was to develop a methodology for protecting 

mobile agents in intrusion detection systems and to demonstrate the ability of such 

agents to address the shortcomings in current host-based IDSs. This methodology 

supports the defense of computer systems through a secure, mobile agent-based 

architecture. 

The system design to support the proposed methodology for protecting the 

confidentiality, integrity, and availability of mobile agents is summarized in Figure 7. 

This design involves the interaction of a number of distributed components and tools. 

The components and their interactions were designed to provide security for each aspect 

of the system. Within each component, a number of functions are outlined. Each of 

these various components, their functions, and their interactions are discussed in the 

following sections. 

1.   System Overview 

Security is of fundamental importance in this system. In order to build an attack- 

resistant architecture in which mobile agents can execute and migrate, each of the 

components in the system were designed from the beginning with security in mind. 

Although introducing strong security mechanisms appear to conflict with flexibility and 
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Figure 7: Proposed methodology. 

usability, not addressing security issues prevents such mobile agent based systems from 

being fielded as real-world applications [79]. The interactions between components and 

the security implications of each is described next for each element of the system. 

2.   Mobile Agents 

A mobile agent is simply "a program that represents a user in a computer network 

and can migrate autonomously from node to node, to perform some task on behalf of the 

user" [5]. Once a mobile agent is dispatched, it becomes independent of the creating 

host and can operate asynchronously and autonomously. A fundamental characteristic 
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of mobile agents is that they should only reside on one host at a time; however, since 

mobile agents move from host to host, they can occupy different hosts at different times. 

In addition, agents should be independent of one another in that their executions can be 

performed concurrently on different hosts [16]. 

Mobile agents in this system are composed of three basic components: interpreted 

code, data (or payload), and an itinerary as illustrated in Figure 8. Agents were designed 

to either follow a predetermined itinerary that is established by the agent coordinator 

(discussed below), or to follow a random path based on user established criteria. Upon 

arrival at a host, the agent server first checks the incoming agent's security credentials 

before executing the agent's code. Data that results from an agent's execution on a 

particular host is stored in a reserved location as payload for that host. Upon the return 

of an agent to the agent coordinator, analysis is performed on the collected data to 

determine if any indications of security problems are present. 

This design used agents in a roaming paradigm. That is, many different agents, with 

different functions, are dispatched to roam through the network looking for potentially 

intrusive behavior. These agents collect information specific to their particular purpose 

as they travel. Agents can be designed very generally to just gather data as they move 

from host to host. Others may be designed to look specifically for particular evidences 

of security problems. Some agents may be written to deliver information to hosts as 

they travel (i.e. delivering new attack signatures to stationary host-based IDS 

components). Using an adequate number of functionally disparate agents at a reasonable 

frequency will provide sufficient network coverage to detect many potentially serious 
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Figure 8: Basic structure of a mobile agent. 

system vulnerabilities and intrusive behaviors. Regardless of the type of agent, however, 

an agent's own security must be ensured in order for this approach to be viable. 

Mobile agents must be protected from three major threats. First, the confidentiality 

of an agent's data and code must be protected. An intruder may gain valuable 

information to help him better penetrate a system if he is able to see which mobile agents 

are migrating through the network. In addition, if intruders can see data that has been 

collected by agents at previous hosts, they might gain an advantage in further exploiting 

the system. The confidentiality of agents, therefore, must be protected from 

eavesdroppers in the network. 
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Another major threat for mobile agents is tampering. The integrity of mobile agent 

code and data must be protected. Any changes to an agent must be detected as quickly 

as possible. Agent servers must not execute code that may have been tampered with in 

order to prevent malicious changes from doing any harm. In addition, tampered data 

must not be relied upon as a true representation of the state of the system, in order to 

prevent possible intruders from hiding their tracks through agent manipulation. 

Finally, the availability of agents must be protected by ensuring the system is resilient 

to denial-of-service attacks and faulty hosts [80]. Mobile agents may be inadvertently 

removed from the system by a faulty host or they may be intentionally deleted by a 

malicious host or intruder. In either case, the system must be able to detect if an agent is 

removed and regenerate lost agents back into the system. The system architecture was 

designed to address and counter each of these threats. 

In order to achieve the goal of providing confidentiality for mobile agents during 

migration, each agent is encrypted before it is transported between hosts. Public key 

cryptography offers many ease-of-use benefits over symmetric-key encryption, 

especially when supplemented with a public key infrastructure. Besides offering 

confidentiality of data, public key encryption also forms the basis of providing mutual 

authentication of hosts and agents. All of the components in the designed architecture 

were designed to use public-key cryptography for both secrecy and authentication as 

described in detail in Chapter IV. 

In addition to protecting an agent during transmission, agent confidentiality must also 

be protected while agents are resident on agent servers. Because agents must exist in 
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plaintext form in order to be executed, they may be vulnerable to eavesdroppers on the 

host while executing. No general solution has been found to protect agent code that is 

executing; however, Sander and Tschudin [39] proposed a very limited method of code 

protection using encrypted functions. The major drawback of this approach, though, is 

that no known methods exist in which arbitrary functions can be transformed into 

encrypted forms for use in mobile agents. 

Agent data can still be protected, however, using conventional cryptographic 

mechanisms. Agents in this system were designed with a secure payload repository that 

keeps data private during the course of an agent's travels. Each host places data relevant 

to its site in the repository and encrypts that data using public-key cryptography. This 

ensures that both the confidentiality and integrity of the payload is protected both during 

transmission and while an agent is executing. 

In addition to protecting the privacy of agent code and data from eavesdroppers, an 

agent's integrity must also be protected. Any changes to an agent's code, data, or 

itinerary must be detected as soon as possible before any damage can be done. Digital 

signatures are used to detect any tampering of an agent. Public-key cryptography and 

SHA-1 generated message digests provide a convenient mechanism for ensuring the 

integrity of mobile agents. Agent servers were designed to sign an agent prior to 

migration. Upon arrival at its destination, the receiving agent server checks the agent's 

digital signature to verify that there was no tampering of the agent during transit. 

In addition to signing the entire agent, each of the components that makeup an agent 

are also digitally signed as illustrated in Figure 9. The Agent Coordinator signs an 
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Figure 9: Protection for a mobile agent. 

agent's code and itinerary before dispatching it. This ensures that any tampering of 

these components can be detected upon arrival at a subsequent host. Each host also 

signs the data it adds to the payload so that any changes made subsequently will be 

detected upon the agent's return to the agent coordinator. 

Mobile agents and agent servers do not necessarily trust one another. This issue of 

mutual suspicion was addressed in the system by ensuring that mechanisms for mutual 

authentication were in place. Each time an agent migrates, it authenticates the host on 

which it arrives and the receiving agent server authenticates the agent to verify its origin. 

Public key cryptography is used as the authentication mechanism. In addition, each 
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agent is assigned a unique and unchangeable agent identifier when it is created, which 

helps prevent replay and flooding attacks. 

Mobile agents are associated with a security level that can be changed by the Agent 

Coordinator prior to dispatch. The security level can be configured by the system 

administrator to provide flexibility and an appropriate level of security for the 

environment in which agents exist. Level 1 agents are the most secure, in that constant 

communication with the coordinator is maintained at each hop. Level 2 agents are 

equipped with medium security, in that faulty hosts are circumvented (taken care of by 

each agent server) and only asynchronous messaging occurs with the coordinator when 

needed. Level 3 is low security, in that no communication occurs with the coordinator 

between the dispatch of an agent and its eventual return. Care is taken to recognize 

when an agent never returns. In addition, agents may followed randomized itinerary 

routes if the system administrator so chooses. The role of these security levels will be 

described more in subsequent sections. 

3.   Mobile Agent Servers 

Mobile agent servers provide the actual runtime environment for visiting mobile 

agents. Because most networks are composed of heterogeneous components, the 

runtime environment provided by agent servers supports an interpreted programming 

language [81, 82]. Each agent server must have a unique name and must be running on 

each host in the network that will support mobile agent execution. In addition to 

providing the runtime environment for mobile agents, these servers also handle the local 
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management, communications, transport, and regeneration of mobile agents. These 

functions are handled by subcomponents of each agent server. 

The agent management component for an agent server handles all management 

functions for the agents currently resident. The agent management functionality serves 

as the director of all agent activities for that particular host. It also keeps track of the 

agents that are running on the server and answers any queries from the Agent 

Coordinator about their status. 

The agent transport component supports the migration of agents to and from the host. 

This component is responsible for serializing agents prior to their departure and 

deserializing them upon their arrival. In addition, the agent transport component works 

with the security components to encrypt and decrypt agents, check the code and itinerary 

integrity of arriving agents, and authenticate the origin of incoming agents. The agent 

transport component is also responsible for ensuring the successful migration to the next 

host on an agent's itinerary. Any problems with agent transport are handed off to the 

agent management function which then makes decisions on how to address any errors. 

The communications component is responsible for all remote interactions between 

the agent server and other system components. This includes communications with the 

other agent servers, the secure blackboard, and the agent coordinator. All 

communication takes place using asynchronous messaging via socket connections. 

Four types of duplex communication exists in the system: 

• Agents to Agent Server. 

• Agent Coordinator to Agent Server. 
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• Agent Coordinator to Agent (through Secure Blackboard). 

• Agent to Agent (through Secure Blackboard) - one of the primary motivations 

for mobile agents is to avoid remote communications in the first place [16], so 

communication between agents takes place asynchronously through a Secure 

Blackboard (secure shared memory). 

The persistence manager is responsible for storing mobile agents to nonvolatile 

storage to aid in the recovery and regeneration of agents that may become lost during 

migration to other hosts. "The notion of a partial failure is a fundamental characteristic 

of a distributed system: at a given time, some components of the system might have 

failed whereas others might be operational" [83]. This function is critical in a distributed 

system where defective transmissions, faulty hosts, and malicious components can exist. 

An agent is automatically stored to disk before each migration as determined by the 

system's fault-tolerant policies described later. In the case of a subsequent fault or 

malicious deletion of an agent, the persistence manager may be required to regenerate a 

stored agent which can then be reintroduced into the network. Upon notification that an 

agent is no longer needed, the persistence manager removes stored agents from the 

persistence store to free space for other agents. 

The interface between mobile agents and the intrusion detection components on the 

local machine takes place through proxy agents. These proxy agents are stationary, 

trusted components dedicated to representing the intrusion detection components to the 

agent server. The proxy agent oversees the security of all interactions between visiting 

mobile agents and the IDS components. These interactions take place through 
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application programming interfaces (APIs) that allow mobile agents access to the IDS 

system. 

4.   The Agent Coordinator 

All mobile agents originate at the Agent Coordinator. The Agent Coordinator 

maintains information about all components in the mobile agent system, including hosts, 

agent servers, and agents. As hosts and agent servers are added to the network, they are 

registered with the Agent Coordinator. The Agent Coordinator is also responsible for 

the creation and removal of mobile agents from the system. The Agent Coordinator, in 

conjunction with individual agent servers, is responsible for detecting breaches in 

security of any of its agents, including violations of integrity and availability. Finally, 

the Agent Coordinator receives instructions from and sends data to the intrusion 

detection system analysis component which performs analyses on data collected by the 

mobile agent system. 

The Agent Coordinator incorporates three major functions. The agent management 

function is responsible for system-wide management functions for all agents and agent 

servers in the network. The management component creates agents, assigns each a 

unique identifier, and determines the agent's itinerary. This component also maintains 

timers on each dispatched agent in order to detect when agents are lost or destroyed. 

Timers are also maintained in order to automatically dispatch agents without user 

intervention. 

The communications component is responsible for all remote interactions between 

the agent coordinator and all other system components, including communications with 
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the agent servers, the secure blackboard, and the IDS Analysis Agent. All 

communication takes place using asynchronous messaging via socket connections. 

The security component of the Agent Coordinator is responsible for detecting 

violations of agent integrity and for ensuring the availability of all dispatched agents. 

Upon return of an agent to the Agent Coordinator, the security component performs an 

analysis of the agent to determine of any security violations have occurred. This 

component checks the integrity of the agent's code, itinerary, and payload. If data for a 

host that was supposed to be visited on the itinerary is missing, the security component 

may perform further analysis to determine the cause as described in the section of 

distributed fault tolerance. The management of trust [84] in the system is addressed by 

restricting key management of all public keys to the agent coordinator and a public key 

infrastructure. 

5.   Intrusion Detection System Analysis Engine 

Agents dump their payload to persistent data logs upon return to the Agent 

Coordinator. The IDS Analysis Engine is responsible for analyzing agent payloads for 

indications of intrusion or security violations. The IDS Analysis Engine maintains 

information on attacks and system vulnerabilities and compares agents' payloads against 

this information. If an analysis indicates a possible problem, the IDS Analysis Engine 

can then take some corresponding action, usually involving some form of notification to 

the system administrator. 

The IDS Analysis Engine was designed to be modular, in order to be easily 

expandable when new types of analyses must be performed for new types of attacks or 
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vulnerabilities. This enables the system administrator to add additional functions that 

look at agent payloads for intrusive behaviors that may not have been previously 

defined. Similar to virus scanning engines, the IDS Analysis Agent may have to be 

updated by adding additional functionality as new types of vulnerabilities and attacks are 

defined that the previous modules were unable to detect. 

The Agent Coordinator and the IDS Analysis Agent can communicate directly. 

Typically, this communication entails the Agent Coordinator informing the IDS Analysis 

Agent that new data has arrived that requires analysis, and the IDS Analysis Agent 

loading that data for investigation. The IDS Analysis Agent can also request that 

additional actions be taken by the Agent Coordinator, such as dispatching agents or 

querying agent servers in order to gather more information about a potential problem. 

6.   Secure Blackboard 

Agents communicate asynchronously through the Secure Blackboard. Agents can 

check for messages on the Secure Blackboard when arriving and leaving hosts, or at any 

other time during their execution as determined by their authors. The Agent Coordinator 

and agent servers, likewise, can check for messages periodically during their execution. 

Upon receipt of a message, these entities will then act appropriately based on the type of 

message and its content. 

The Blackboard is similar to an agent bulletin board system [85], but is shared by all 

hosts on the network. Components of the system send messages by sending them to the 

Blackboard, where they may be subsequently received at some later time. Since this 

communication protocol is temporally uncoupled, but spatially coupled, these systems 
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rely on a repository to store and retrieve messages. Because messages are left in the 

Blackboard, there is no need for the sender and the receiver to exist at the time of the 

communication. This model is well-suited for the highly dynamic environment that is 

required by this research. 

7.   User Interface 

The user interface to the agent coordinator allows the system administrator to manage 

and oversee the entire system. Specifically, the user interface allows the user to easily 

monitor, create, dispatch, and delete agents from the system. In addition, the user 

interface notifies the administrator of potential security violations in the system, 

including violations of agent integrity or availability. The user interface was designed to 

be a simple window-based system, incorporating menus, icons, and dialog boxes to 

facilitate easy interaction with the user. Because the user interface is the gateway into 

the entire system, all users' actions are authenticated and logged by the system. The IDS 

Analysis Agent and the agent servers also provide graphical user interfaces for 

functional, debugging, and maintenance purposes. 

B. Distributed Availability for Agents 

In addition to addressing the issues of confidentiality, integrity, and mutual 

authentication, the issue of agent availability is important because of the threat of denial 

of service. Mechanisms must be in place to ensure that the system recognizes when 

agents are lost or destroyed, and that lost agents can be recovered. This section explains 

the design of the these mechanisms for the proposed methodology. 
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The two primary threats to agent availability are loss of agents (possibly through 

malicious intent) and host servers that malfunction. Agents may be lost because of 

failures in one of the communication layers of the network or because an agent server 

goes down while hosting an agent. Servers may malfunction for a number of reasons, 

including hardware problems, software problems, or intrusive activity. Regardless of the 

reasons, the system was designed to recognize when agents are lost and when servers 

malfunction. 

The security level associated with an agent determines the protocol that is followed 

for detecting missing agents. Level 1 agents are the most secure, in that constant 

communication with the coordinator is maintained at each hop. Because these agents 

report back to the Agent Coordinator each time they arrive and depart from a host, the 

Agent Coordinator can maintain information on where an agent has been and where it is 

going. When an agent is "lost", actions can be taken to discover where the problem 

occurred and what should be done as a remedy. A simple scenario will help explain the 

protocol. 

Given: a Level 1 agent with a sequential itinerary of hosts A, B, C, and D is about to 

be dispatched by the Agent Coordinator. When the agent is dispatched, the Agent 

Coordinator begins to "track" the agent as it moves from host to host. When the agent 

arrives at Host A, it sends a notification message to the Agent Coordinator indicating 

that it arrived safely. When the agent departs for the next host, it sends another 

notification message indicating that it is leaving Host A with destination of Host B. 

Host A saves a copy of the agent to persistent memory prior to transmission. When the 
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agent arrives at Host B, it sends another notification message. Prior to departure, again 

Host B saves the agent to persistent memory and transmits a message indicating the 

agents departure to Host C. 

Assume that some failure occurred at or before Host C. Either the agent never made 

it, or Host C went down just after receiving the agent, but before a notification could be 

sent to the Agent Coordinator. After some timeout period, the Agent Coordinator will 

realize that it has not yet received a notification message from Host C indicating the 

successful arrival of the agent. After several attempts of inquiring of Host C, all of 

which are unsuccessful, the Agent Coordinator contacts the last known host to 

successfully execute and save the agent (Host B). Host B then regenerates the agent 

from persistent storage and dispatches the agent to the next host in the itinerary after 

Host C. Upon successful arrival at Host D, a notification message is sent, informing the 

Agent Coordinator of its next location. This protocol continues until the agent returns to 

the Agent Coordinator. 

Level 2 agents are equipped with medium security, in that faulty hosts are 

circumvented (taken care of by each agent server) and only asynchronous messaging 

occurs with the coordinator when needed. The protocol to handle when these agent are 

lost is similar to that of Level 1 agents. However, the mandatory messaging can be 

turned off, in which case the protocol to handle problems defaults to that used for Level 

3 agents. 

Level 3 agents possess the lowest form of security, in that no communication occurs 

with the coordinator between the dispatch of an agent and its eventual return. Care was 
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taken to recognize when an agent never returns. In addition, Level 3 agents may follow 

randomized itinerary routes if the system administrator so chooses. Since no 

communication takes place between the agents and the Agent Coordinator, it is 

impossible for the Agent Coordinator to know where an agent is at any given time. 

To solve this problem, the Agent Coordinator sets a timeout period that is a function 

of the number of hosts to be visited on an agent's itinerary. If the timeout period expires 

without the return of the agent, several options are available to the Agent Coordinator. 

First, it can just simply notify the system administrator that the agent is late. The system 

administrator can then take action if necessary. Second, the agent can be dispatched a 

second time, with a modified timeout period to give it more time. A third option, is to 

increase the lost agent's security level to Level 1 and dispatch the agent again, this time 

tracking its activities as it migrates. This may give the Agent Coordinator information 

into where the problem in the network resides. 
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CHAPTER IV 

IMPLEMENTATION 

A. Introduction 

In order to demonstrate the efficacy of this research, it was necessary to implement a 

prototype based on the design that was described in Chapter in. A secure mobile agent 

infrastructure was built to support experimentation. In addition, agent prototypes were 

developed to demonstrate their ability to be protected. Finally, intrusion detection 

components were constructed to demonstrate the value of using the proposed secure 

architecture in this domain. This chapter describes the implemented prototype by 

detailing how each component of the system was built. In particular, this chapter will 

focus on the implementation of the agent coordinator, the mobile agent servers, the agent 

communication system, the mobile agents themselves, and the intrusion detection 

components. 

All components in this system are written entirely in Java version 2. Java was chosen 

primarily because it can be easily executed on most platforms, making the distribution of 

components in a heterogeneous networking environment much easier. Java was also 

chosen because extensive use was made of the Java Swing API which made the user 

interface implementation for this prototype much simpler. 
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B. The Agent Coordinator 

The Agent Coordinator serves as the primary interface component between the 

system administrator and the secure mobile agent system. As such, it is primarily event- 

driven - that is, it awaits user input before some action is taken. The Agent Coordinator 

is written as a multi-threaded application because it must be able to handle several 

different functions at the same time. Most interactions take place using various menus, 

toolbars, and dialog boxes through the graphical user interface provided by the Agent 

Coordinator (see Figure 10). Because of the event-driven nature of the Agent 

Coordinator, the implementation will be described in terms of the various functions and 

actions that this component provides to the system administrator. 

i Agent Coordinator - localhost a 
File Agent View Options Tools Help 

Ö 
mm H ;Q i§> 

Active Agents Messages 

1001 InetAgent.agt Dispatched Thu Dec 14 13:04:08 CST 2000 

1004 HFAgent.agt Ready Timer[60] 

1011 InetAgent.agt Dispatched Thu Dec 14 13:04:04 CST 2000 

1014 PSAgent.agt Ready 

1015 ProgAgent.agt Dispatched Timer[60] 

1019 LoginAgent.agt Ready 

1021 HFAgent.agt Dispatched Thu Dec 14 13:04:06 CST 2000 

1022 PSAgent.agt Ready 

Figure 10: Agent Coordinator. 
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1.   File Operations 

The Agent Coordinator provides two primary file functions for loading and saving 

mobile agents to secondary storage. Because mobile agents are written in normal Java 

source code that must be interpreted in a Java Virtual Machine in order to execute, their 

existence in the form of source code is meaningless outside of such an execution 

environment. Therefore, the Agent Coordinator saves agents in serialized object form so 

that their individual identities and state can be preserved. Agent code, as well as the 

current state of all of its data structures is maintained on persistent storage for later 

retrieval. Likewise, loading a previously serialized object restores an agent to its state 

prior to being saved. It is interesting to note that before an agent's first use, its data 

structures and identity must be initialized and serialized to storage in order for the agent 

to be placed in a mobile and executable state. 

This system uses Java's object manipulation classes to serialize objects for persistent 

storage. In order to save an object, a Java Obj ectOutputStream is wrapped around a 

FileOutputStream. The agent is then written to this stream which automatically 

serializes the agent's code and data structures and writes the agent to a file. These 

serialized agent files are named with a .agt extension to make them easily filtered and 

recognizable in subsequent file operations. 

The file open operation is similar in that it uses Java's object manipulation classes. In 

particular, an ObjectlnputStream is wrapped around a FilelnputStream to 

deserialize and load saved agents. Any potential errors with file operations (i.e. storage 

problems, non-existent files, etc.) are handled using Java's exception mechanism to 
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Figure 11: File dialog box. 

gracefully recover and notify the user. A graphical user interface is used for all file 

operations to abstract away these details (see Figure 11). 

2.   Itinerary Operations 

The Agent Coordinator maintains an internal list of all nodes in the network that are 

available to host mobile agents. Most agents are initialized with a pre-defined itinerary 

when they are loaded as specified by settings in the Agent Coordinator. The system 

administrator, however, can specify each agent's itinerary at any time before it is 

dispatched (see Figure 12). When a user chooses to change an agent's itinerary, the 

Agent Coordinator copies the new host information into the agent's internal itinerary 

data structure. This is done by overwriting the agent's itinerary Vector with a new 

Vector containing the new itinerary. The agent can then be saved with this new 

information to make it persistent, or it can serve as a temporary itinerary for the duration 
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of an agent's non-persistent lifetime. Based on the security level set for the agent, it will 

either follow the itinerary sequentially or randomly once it is mobile. 

3.   Agent Dispatch Function 

The dispatch function is one of the primary functions of the Agent Coordinator. 

Many steps must occur before an agent can be successfully transmitted. The first step 

involves setting up a communication channel between the Agent Coordinator and the 

first host in the itinerary. 

The Agent Coordinator queries the agent to obtain the first host in the itinerary. A 

socket is then opened with this remote host by connecting to its IP address on a well- 

known port. If the socket connection is successful, the destination host's public key is 
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obtained from the PKI and loaded into memory for use. The PKI provides the ability of 

hosts to query and obtain another host's public key. 

Using this public key, an RSA encrypted Obj ectOutputStream is setup between 

the Agent Coordinator and the destination host. The implementation of the RSA 

EncryptStream class is implemented in a separate security package that is described in 

a subsequent section. This encrypted object stream provides a secure mechanism that 

both transmits serialized agents as well as provides link encryption between hops. 

Before the agent is actually transmitted, however, the Agent Coordinator first 

digitally signs the agent using the SHA-1 algorithm with the Agent Coordinator's own 

private key. The SHA-1 algorithm is implemented in the same security package that 

also provides all the other security functionality. The signed and encrypted serialized 

agent is then written to the open stream. Errors that might occur at any phase of this 

process are appropriately handled by the Agent Coordinator with appropriate error 

messages given to the system administrator. 

4.   Send Mail Function 

The Agent Coordinator also provides an interface to allow the user to manually send 

messages to agent servers and individual agents. Using a GUI dialog box, the user can 

enter the destination and message content that is then formatted into proper XML format 

(see Figure 13). Each message is encrypted and signed by the Agent Coordinator before 

it is transmitted to the system's agent message-handler server. The structure and format 

of these messages is described in a subsequent section on secure agent communications. 
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Figure 13: XML message dialog box. 

5.   Handling Returning Agents 

In addition to dispatching agents, the Agent Coordinator must also be able to accept 

returning agents. The Agent Coordinator implements a listening thread that 

continuously listens for incoming agents on a well-known port. When this 

AgentAcceptor thread accepts a connection from an agent server, a separate 

AgentHandler thread is started that handles the processing of the incoming agent. 

Because the incoming agent is returning to the Agent Coordinator, the sending host 

will have encrypted the agent with the Agent Coordinator's public key. Hence, the 

AgentHandler thread opens a DecryptStream using the Agent Coordinator's private 

key in order to decrypt the incoming serialized agent. When the entire agent has been 

read, an SHA-1 digital signature is generated using the sending host's public key. This 

signature is then compared to the signature carried by the incoming agent. If the 
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signatures do not match, the integrity of the agent has been violated and a message is 

generated to alert the system administrator. 

If the signatures do match, the incoming agent's payload is then dumped to a file to 

await processing by the IDS Analysis Agent. The agent is then saved to persistent 

storage and all open sockets are closed. Finally, the AgentHandler thread terminates. 

6.   Monitoring Dispatched Agents 

The Agent Coordinator also provides a mechanism to monitor agents as they traverse 

the network. This function allows the Agent Coordinator to detect agent failures and 

take appropriate action to remedy the situation. This is accomplished by starting a 

separate AgentFollower thread whenever an agent is dispatched. 

An AgentFol lower thread allows the Agent Coordinator to detect the two primary 

threats to agent availability: the loss of agents (possibly through malicious intent) and 

host servers that malfunction. When the AgentFol lower thread is initialized, it is 

passed a copy of the agent's itinerary that it is monitoring. The thread then starts a timer 

that can be changed by the user to make its duration longer or shorter. Each time the 

timer expires, the Agent Coordinator checks for an arrival_notif ication message 

from the host that is next in the monitored agent's itinerary. If no message has yet 

arrived, the timer is restarted and the Agent Coordinator waits to again check for an 

incoming message. After five iterations of this process (can be changed by the user), the 

Agent Coordinator assumes that something has occurred to the agent and sends an agent 

revive_request to the last known host that successfully executed the agent. This 
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message instructs the host to restore the agent from persistent storage and to transport 

the agent to the host as indicated in the message. The next host is usually the server in 

the itinerary following that of the host that has failed to send the last notification 

message. 

Monitoring dispatched agents is handled differently for Level 3 agents since no 

communication occurs with the coordinator between the dispatch of an agent and its 

eventual return. The only real monitoring that occurs is to take care of recognizing when 

an agent never returns. To monitor these type of agents, the Agent Coordinator sets a 

timeout period using a Java Timer that is a function of the number of hosts to be visited 

on an agent's itinerary. The value of the timer can be changed manually by the system 

administrator or can be updated periodically based on past performance. If the Timer 

expires without the return of the agent, the Agent Coordinator can either notify the 

system administrator that the agent is late, dispatch the agent a second time with a 

modified timeout period to give it more time, or it can increase the late agent's security 

level to Level 1 and dispatch the agent again, this time tracking its activities as it 

migrates. This may give the Agent Coordinator information into where the problem in 

the network resides. All of the options are user selectable. 

7.   Miscellaneous Functions 

The Agent Coordinator provides several other functions that enhance its 

functionality. First, the Agent Coordinator provides the ability to add timers to 

individual agents. These timers allow the system administrator to indicate that an agent 

should be automatically dispatched by the Agent Coordinator at specified time periods. 
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These time periods can be seconds, minutes, hours, or day. In addition, the user can 

specify an exact time of day when an agent should be dispatched (see Figure 14). These 

timing functions are implemented using Timer threads that are started whenever the 

user selects an appropriate time interval. Each agent may have up to one Timer thread 

associated with it. When a Timer thread indicates that the desired interval has expired, 

it notifies the Agent Coordinator which subsequently dispatches the agent with no user 

interaction. The Timer thread then resets itself and begins its monitoring anew. 

The Agent Coordinator also allows the user to set security related parameters for 

individual agents. The user may specify the security level for a given agent (low, 

medium, or high). These settings are stored internally with each agent so that this 

information is available to agent servers. Agent servers use this information to make 

security related decisions concerning encryption, routing, and fault handling. 

IH!General Options Ell 

Timer Interval Security Level 

0                seconds level 2             ▼! 

15              | minutes 

0               hours Failed Agents 

O Manual reroute 

® Auto reroute 

00:00:00      Time of Day 

OK 

Figure 14: General options for an agent. 
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C. Mobile Agent Servers 

Mobile agent servers provide the actual runtime environment for visiting mobile 

agents. An agent server must be running on each host in the network that will support 

mobile agent execution. In addition to providing the runtime environment for mobile 

agents, these servers also handle the local management, security, communications, 

transport, and regeneration of mobile agents. 

Mobile agent servers may be executed in one of two modes. Interactive mode 

provides a graphical user interface to allow the system administrator to make changes to 

various server settings while the agent server is executing (see Figure 15). In addition, 

interactive mode provides substantial feedback to the system administrator that allows 

for monitoring and debugging of all activities taking place on a specific host. Non- 

interactive mode runs as a normal operating system daemon and restricts changes to 

settings and monitoring to only those things supported through secure messaging with 

the Agent Coordinator. This would be the normal operating mode of an agent server 

unless the system administrator had some particular interest in monitoring the activities 

for an individual host. This could be done by exporting the display to the system 

administrator who may then observe a host's behavior or make changes to its settings. 
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mAgent Server - jabba 

File        Help 
3ÜI 

Br 

Server started : ServerSocket[addr=0.0.0.0/0.0.u.0,port=rj,localport=10365] 
Waiting for new connection... 
Agent arrived here at jabba from 'canary* 
Received Agent: 1217 
Saving Agent to persistent storage! 
InetAgentgoO running. hopsnow=17 
*** Sending Email notification *** 

Figure 15: Agent server GUI. 

Agent servers are implemented as multi-threaded applications capable of handling 

many agents simultaneously. The primary function of these agent servers are to wait for, 

accept, and execute incoming agents. The main method of an agent server implements a 

loop that continuously listens for incoming agents on a well-known port. Whenever an 

agent server accepts a connection from another host, an AgentHandler thread is started 

that handles the processing of the incoming agent. 

The sending host will have encrypted the agent with the destination host's public key. 

Hence, the AgentHandler thread opens a DecryptStream using its own private key 

in order to decrypt the incoming serialized agent. When the entire agent has been read, 

an SHA-1 digital signature is generated using the sending host's public key. This 

signature is then compared to the signature carried by the incoming agent. In addition, 

the itinerary and code segments are checked for integrity by comparing their digital 

signatures using the Agent Coordinator's public key. If any of these signatures do not 
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match, the integrity of the agent has been violated and a message is generated to alert the 

system administrator. In addition, the agent is not executed, but rather is returned 

directly to the Agent Coordinator for checking. 

Assuming that the decryption and signature checking is successful, the agent server 

then contacts the message server to download any messages that may be pending for the 

agent that just arrived. These messages are maintained in a large array that the agent 

may access when executed. In addition, any messages for the agent that may require the 

server's intervention, such as recall messages, are handled by the agent server prior to its 

execution. After checking the agent's security level, the agent server will send an agent 

receipt notification message to the Agent Coordinator for all Level 1 (high) secure 

agents. 

The incoming agent is then executed by calling its go () method as an entrance into 

the agent. After the agent has completed its execution, the agent is then saved to 

persistent storage as an encrypted, serialized Object in case of future failure. 

The agent server then prepares to send the agent to another host. For a Level 1 or 

Level 2 agent, the agent server chooses the next host stored in the agent's itinerary. For 

Level 3 agents, a host is randomly chosen from the remaining unvisited hosts in the 

itinerary. The agent server then attempts to open a socket and an encrypted 

Obj ectOutputStream to the next host. If the connection setup is successful, the agent 

server encrypts and signs the agent as described previously and writes that object to the 

encrypted stream. If the socket setup and stream cannot be successfully established with 

the next host (for example, the host is down or not responding), then a failure is logged 
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and the agent server attempts to select the next host in the itinerary. This process 

continues until a successful connection is established or all possible hosts have been 

tried. If the agent server is not successful with any of the remaining hosts, the agent is 

returned to the Agent Coordinator. 

In addition to checking for messages intended for a currently hosted agent, agent 

servers also periodically check for messages intended for itself. A shutdown message 

will cause the agent server to finish executing any currently hosted agents before closing 

all connections and ports. The server then terminates and will no longer accept mobile 

agents unless it is restarted. Query messages are directed at an agent server by the Agent 

Coordinator when particular information is requested about a server's status, such as the 

number of agents currently executing. 

D. Secure Agent Communications 

All communications in this system take place through a secure message server. This 

message server runs on a well-known host and port so that all components of the system 

have access to the communications system. The location of the message server can 

easily be changed, but all components must be notified so that they know which host is 

handling the messages. 

Agents and agent servers "need knowledge about the semantics of the information" 

and an agreed upon protocol in order to communicate [46, 86]. All communications in 

this system use Extensible Markup Language (XML) formatted messages as a 
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standardized protocol language. XML was chosen because it is extensible, easy to 

format, and human-readable. Some example messages are shown in Table 1. 

The message server continuously listens on a well-known port for incoming requests. 

When connections are established, the message server starts a new MailHandler thread 

to handle the processing of each new request. All messages are encrypted and signed by 

the sender using the destination server's public key and the sender's private key, 

respectively. As with securing agents, RSA is used for encryption and SHA-1 is used to 

generate the digital signatures. The message server has access to the PKI in order to 

access the necessary keys used to secure each message. 

When an XML formatted message intended for an agent or an agent server arrives at 

the message server, it is parsed into its components. The <to> field is used to determine 

the message's intended destination. The message is then placed into the recipient's 

message box awaiting subsequent retrieval. 

Message boxes are persistent message files that store all messages for a particular 

entity. These files consist of one or more messages in ASCII readable XML format that 

is stored on the message server's host drive. A separate message file is setup for each 

agent and agent server in the system. These files are created and initialized each time 

one of these components enters the system. For example, when an agent server is first 

started, it sends a secure XML-formatted message to the Agent Coordinator indicating 

that it is up and running. The message server, in response to such a message, creates and 

initializes a message file for the agent server. 
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Table 1: Sample XML messages. 

<arrival_notification> 
<to> jabba </to> 
<from> 1001/Agent </from> 
<header> arrival_notification </header> 
<body> canary/128.194.132.192 </body> 
</arrival_notification> 

<message> 
<to> jabba </to> 
<from> hansolo/128.194.135.217 </from> 
<header> message </header> 
<body> server_started </body> 

</message> 

<message> 
<to> hansolo </to> 
<from> jabba </from> 
<header> system_message </header> 
<body> shutdown_server </body> 
</message> 

When a request to retrieve messages arrives at the message server, the message box 

for the requesting entity is opened and read. Each message in the file that has been 

added to the message box since it was last checked is then sent sequentially, in order of 

arrival, to its destination. After each request has been serviced and all messages have 

been processed, the MailHandler thread handling the particular request closes all its 

connections and terminates. 
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E.  Mobile Agents 

This system implements an Agent base class as an abstract, serializable class 

in Java. This base class defines the methods and data structures that all other derived 

agents must implement. The reason to establish this common interface is to establish a 

basic form to define the components that are in common for all mobile agents. This 

standard agent template allows all components of the entire system to interact in the 

same way with any agent, regardless of its functionality. 

The most important method that all agents must implement is the go () method. This 

method provides the entry point into an agent's functional code. As an agent moves 

from host to host, agent servers execute the go () method which executes the agent. For 

most agents, their only differences exist in their go () methods. As such, in order to 

write a new agent, the system administrator will only have to rewrite or modify an 

agent's go () method in order to perform some new function. Agents also implement 

other methods such asinitializeO, hop Address (), and dump () that perform 

necessary housekeeping functions such as initializing an agent's data structures, 

returning hosts from its itinerary, and releasing its payload. 

The Agent base class also defines the data structures that all agents must contain. 

The four most critical are the itinerary, payload, agentID, and sec_level. The 

itinerary and payload structures are implemented as Java vectors. As their name 

indicates, they contain an agent's current travel itinerary and the data collected from 

each host. The agentID contains the unique agent identification number assigned by 
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the Agent Coordinator. The sec_level maintains the agent's current security level as 

determined by the system administrator at the Agent Coordinator prior to its dispatch. 

In addition to these data structures, each agent also carries the digital signatures 

necessary to prove the integrity of its components to each agent server. These signatures 

are stored as ASCII strings, but are not visible to a potential interceptor because the 

entire structure of an agent is encrypted as described previously during its traversal. 

Agent code is written in Java because it is easy to learn, ubiquitous, and simple. The 

advantages of Java are many. Because Java is interpreted, it is highly portable and easier 

to secure. Also, Java interpreters can be embedded in a variety of network devices. 

Network computing today is necessarily heterogeneous. Even in "closed" organizations, 

both hardware and software are often different. Thus, Java offers obvious advantages in 

a heterogeneous environment. 

Java does have some disadvantages, but they do not greatly impact the design of the 

system. Programs written in Java are inefficient compared to native machine code, 

although just-in-time compilation mechanisms are greatly increasing the speed at which 

Java code is executed. Also, thread-level state cannot be saved in Java, which does not 

permit the resumption of execution of agents to take place at the thread-level [79]. The 

term "state" is typically defined as "the agent attribute values that help it determine what 

to do when it resumes execution at its destination" [10]. Most applications, however, do 

not require such fine-grained maintenance of program state across migrations. In this 

system, saving the high-level state of an agent by persistently maintaining the values of 

all of its data structures was sufficient. 
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Current Java-based mobile agent systems have many things in common. In addition 

to using the same programming language, most of them also use standard versions of the 

Java Virtual Machine (JVM), although a few have altered the JVM in order to 

implement thread-level state migration. Also, most of the current systems use Java's 

object serialization mechanisms in their transport protocols. These systems differ, 

however, in how agents are transported and the communication mechanisms that are 

implemented [10]. 

This system implements its mobile agents using Java 2.0 running on standard 

versions of the Java Virtual Machine that execute on Windows NT, Solaris 7.0, and 

Linux 2.2 platforms. This system was implemented without making changes to either 

the operating system or the JVMs. 

F.  Intrusion Detection System Analysis Engine 

Upon return to the Agent Coordinator, agents dump their payload to persistent data 

logs. The IDS Analysis Engine, which runs concurrently with the Agent Coordinator, is 

responsible for analyzing these payload logs and alerting the system administrator to 

potential problems. Upon notification of a possible security violation, the system 

administrator can then take action to investigate and remedy the problem (see Figure 

16). 
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Figure 16: Analysis engine output. 
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The IDS Analysis Engine begins by loading a rule set for each different type of agent 

in the system. As agents return to the Agent Coordinator and deposit their payload, the 

IDS Analysis Agent compares portions of the payload against triggers in the agents' 

corresponding rule set. If a trigger is indicated, the actions associated with it is 

performed, usually involving a written notification via the terminal to the administrator 

for further action. 

For example, one type of agent may gather information concerning which processes 

are currently running on each host in the network. When the agent returns the Agent 

Coordinator, it will dump this information. The IDS Analysis Engine, seeing a new 

payload from the agent, will analyze its contents by comparing each running process in 

the log against a set of trigger processes in the rule set. When a match is found, the IDS 

Analysis Agent notifies the system administrator through an alert. 
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Agents which collect information whose analysis is more complex than pattern 

matching can be handled by adding new modules to the EDS Analysis Engine. The 

system administrator can add additional functions that look at agent payloads for 

intrusive behaviors that may not be easily defined through a rule set. 

G. User Interface 

As stated earlier, Java was chosen primarily because it can be easily executed on 

most platforms, making the distribution of components in a heterogeneous networking 

environment much easier. Java was also chosen because extensive use was made of the 

Java Swing API which made the user interface implementation for this prototype much 

simpler. All interfaces for each component were written using standard APIs to 

maintain the portability and standard "look and feel" across platforms. User interfaces 

were written in Java 2 Platform version 1.2. 
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CHAPTER V 

ANALYSIS AND RESULTS 

A. Introduction 

This chapter describes the analysis and results of this research. The process used to 

test and evaluate the prototype for this system is also described. 

There are currently no existing systems that implement intrusion detection 

functionality through the use of mobile agents as described in this research. As 

described in Chapter n, many intrusion detection technologies exist, some of which rely 

on agents with very limited mobility capabilities. However, none of these systems rely 

on the roaming agent paradigm described in this research, and none provides security for 

its components that make the proposed approach feasible. Since there are no other 

existing equivalent systems with which to compare the methodology proposed in this 

research, an alternate method of evaluation was used as described in the following 

sections. 

B. Verification 

Verification is the process of ensuring that the implemented system performs as 

designed. This is done by comparing the conceptual design to the actual implementation 

of the system in a programming language. Testing each component to ensure that it 

accomplishes its purpose is a straightforward process. It is typical for verification to be 

conducted as a sequential and iterative process as components are designed and 
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implemented. As with other systems, this is the approach that was taken for this 

research. Specific details of the verification process are provided in Appendix A. Table 

2 shows the number of tests performed for each component. 

1.   Mobile Agents 

The mobile agents were the easiest components in this system to verify. Because 

each agent was designed with a specific purpose in mind, it was simply a matter of 

dispatching each agent into the network and watching its behavior in terms of movement 

and execution to determine if they were behaving correctly. When the agents returned, 

their payloads were analyzed to ensure that they were carrying the correct information. 

This process can be illustrated using an example. The PSAgent was designed to 

travel to a series of hosts as determined by the system administrator, and collect a list of 

running processes on each host it visits. To verify it was working correctly, the agent 

was dispatched and its progress was monitored by watching where it migrated. Its actual 

migration path was compared to that given by the system administrator. When the agent 

returned, its payload was compared against the actual list of processes running on each 

host it visited. In all test cases, each agent performed as designed. 

In other cases, simple "triggers" were strategically placed on various hosts in the 

network to verify that different agents detected problems as designed. By monitoring 

their progress and results, it was easily verifiable that the agent implementations did 

what they were designed to do. 



84 

Table 2: Number of validation tests performed. 

Mobile Agents 40 
IDS Analysis Engine 24 
Agent Coordinator 60 
Agent Servers 24 

2.   IDS Analysis Engine 

Once the agent implementations were verified, the IDS Analysis Engine could be 

tested. The technique used to verify this component was to compare its results with 

known correct answers. That is, did the IDS Analysis Engine actually generate a 

detection when positive results from returning agents indicated possible intrusive 

behavior? 

A series of agents was dispatched into the network, each looking for different signs of 

intrusive behavior and other system vulnerabilities. Several hosts were intentionally 

"seeded" with malicious indications that would be picked up by roaming agents. Upon 

the return of each agent, the IDS Analysis Engine was observed to see if it correctly 

analyzed each agent's payload. In each case, the IDS Analysis Engine gave proper 

indication of intrusive behavior for each type of intrusion that was planted throughout 

the network. 
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3. Agent Coordinator 

The functionality of the Agent Coordinator was verified against its design iteratively 

as it was developed. It was observed during its execution to ensure that it functioned 

correctly. Because the Agent Coordinator is primarily event driven based on user input, 

it was relatively easy to see that the Agent Coordinator responded correctly to the user. 

In addition, the non-interactive functions such as the monitoring of dispatched agents 

and the timing of automatic dispatches were tested with a variety of scenarios to ensure 

that they behaved properly and as designed. To aid in the monitoring of the Agent 

Coordinator, a debug log was turned on to provide visibility into its functionality as it 

executed. 

4. Agent Servers 

In a similar manner, the agent servers were verified against their design by observing 

their functionality during execution. An optional debugging log was kept on each server 

to examine its behavior in handling migrating agents and agent execution. The results of 

agent executions were monitored to ensure that the servers were correctly executing 

agents when they arrived. In addition, the security functions of the servers were 

observed by analyzing incoming and outgoing agents to ensure that they were being 

properly signed and encrypted. It was also straightforward to verify that the agent 

servers were correctly saving agents to persistent storage and reviving them upon request 

by observing the persistent resources allocated to each agent server. 
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C. Validation 

Validation is the process of ensuring that the design of the system solves the desired 

problem. That is, it is desirable to know how accurately the system performs its 

intended function. The validation of this system posed a few challenges. Since the 

intended purpose of the proposed system is to provide a methodology for protecting 

mobile agents in intrusion detection systems and to demonstrate the ability of such 

agents to address the shortcomings in current host-based IDSs, the validation of the 

system entails both determining the security of the system as well as its ability to detect 

intrusions when they occur. Appendix A provides specific details of the validation 

experiments. 

1.   Validating Agent Security 

As described in Chapter IV, a prototype system was built to demonstrate the 

feasibility of this research. Using the completed prototype, many experiments were 

conducted for the purpose of verifying and validating the security of the entire agent 

architecture. The number of experiments run to validate each aspect of the agent's 

security is provided in Table 3. 

a.   Modifying Agent Itineraries 

This first set of experiments involved testing the ability of the components in the 

system to detect when an agent's itinerary had been modified in any way. The primary 

purpose of these experiments was to simulate what an attacker might attempt to do if 
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access to an agent was obtained and what would happen if he changed the itinerary to 

suit a malicious purpose. For example, an attacker might change an agent's itinerary to 

send it off to some network "black hole" or to reroute it around a host that had already 

been compromised in order to escape detection. 

In these experiments, the itineraries of several agents were altered after the agents had 

left the Agent Coordinator and were migrating "in the wild". Without fail, the next 

component in the system to receive such a modified agent, whether an agent server or 

the Agent Coordinator, detected that a modification to the itinerary had occurred. These 

systems immediately notified the system administrator and halted any further processing 

of the agent. 

In another set of experiments, the itinerary of an agent was changed and a new digital 

signature for that itinerary was generated to replace the signature originally generated by 

the Agent Coordinator. Again, in each case, the next component to receive the agent 

recognized that the signature was a counterfeit because the Agent Coordinator's private 

key was not used to generate it. 

Table 3: Number of agent security validation experiments performed. 

Modifying Agent Itineraries 10 
Modifying Agent Payloads 10 
Modifying Agent Code 10 
Compromising Agent Confidentiality 10 
Introducing False Agents 6 
Dealing with Faulty Servers 18 
Lost Agents 18 
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b.   Modifying Agent Payloads 

A second set of experiments involved testing the ability of the components in the 

system to detect when an agent's payload had been modified. The primary purpose of 

this experiment was to simulate what an attacker might attempt to do if access to an 

agent was obtained and what would happen if he altered or deleted portions of an agent's 

payload. For example, an attacker might change an agent's payload to erase evidence of 

an intrusion in order to escape detection. 

In these experiments, the payloads of several agents were altered during some part of 

their migration "in the wild". In each case, both agent servers and the Agent 

Coordinator detected that a modification had occurred. These systems immediately 

notified the system administrator and halted any further processing of the agent. In 

addition, the location of the alteration was identified, since each host has a separate 

payload "bay" that is signed and encrypted by the respective host. 

In a another set of experiments, the payload of an agent was changed by altering the 

information in one bay for a particular host. A new digital signature for that host was 

generated to replace the signature originally generated by the host whose information 

was contained in that slot. The Agent Coordinator immediately recognized that the 

signature, and thus the data for that slot, was bogus because the respective host's public 

key would not yield a correct decryption. 
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c. Modifying Agent Code 

The next set of experiments involved testing the ability of the components in the 

system to detect when an agent's code segment had been modified in any way. The 

primary purpose of these experiments was to simulate an attacker changing an agent's 

code for malicious purposes. An attacker might change an agent's code to render it 

impotent in detecting certain behaviors. Even worse, an attacker might want to change 

an agent's code so that it would perform some malicious act against the system it was 

designed to protect. 

In these experiments, the code of several agents was altered after the agents had left 

the Agent Coordinator and were migrating "in the wild". In each case, the next 

component in the system to receive these modified agents detected that a change had 

been made to its code. These systems immediately notified the system administrator and 

halted any further processing of the agent. 

Like the previous set of experiments, the code of an agent was changed and a new 

digital signature for that code was generated to replace the signature originally generated 

by the Agent Coordinator. In these cases as well, the next component to receive the 

agent recognized that the signature was bogus. 

d. Compromising Agent Confidentiality 

This set of experiments involved testing the ability of the system to protect the 

confidentiality of agents as they migrated from host to host. The primary purpose of 

these experiments was to simulate an attacker attempting to view an agent as it was 
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migrating across the network. If an intruder could see what agents were in the system 

and what they were doing, he might be able to evade their detection. 

In these experiments, an agent was viewed as it was being transferred between hosts. 

In every case, the agent was indecipherable. Table 4 shows a portion of an agent as it 

looks when transmitted as designed using public key encryption. Table 5 shows the 

same portion of the agent when no encryption is used. As can be seen from Table 5, 

critical elements can be viewed when encryption is not used, including the agent's name, 

itinerary, digital signature, and other key information that might help an intruder. 

As described in Chapter IV, this prototype uses the RS A cryptosystem to provide 

both secrecy and authentication. Its security is based on the intractability of the integer 

factorization problem as described in Menezes, et. al [76]. The strength and security of 

RSA public-key encryption has been well studied and thoroughly tested. This 

abundance of previous literature was relied upon in determining to use the RSA 

cryptosystem. The foundation of this previous research gives confidence to the security 

of the system. 

e.   Introducing False Agents 

This next set of experiments involved testing the ability of the components in the 

system to detect when a false agent was introduced into the system to masquerade as a 

real agent. This simulates what an attacker might attempt to do if he were to introduce 

an imitation agent into the system for some malicious purpose. For example, an attacker 
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Table 4: Segment of an encrypted agent. 
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might create an agent that benefits him by performing data collection on his behalf and 

gathering information on how the system is configured. 

In these experiments, rogue agents were created and were sent migrating "in the 

wild". In each case, the receiver of such an agent detected that an illegitimate transfer 

was being attempted. Because the attacker does not have access to the private keys for 

any of the components in the system, he cannot properly encrypt and sign these false 

agents. Therefore, these systems recognize an incorrectly transmitted agent and 

immediately notified the system administrator. 

f.   Dealing with Faulty Servers 

The next set of experiments involved testing the ability of agents and agent servers to 

deal with faulty servers. The primary purpose of this experiment was to simulate what 

might happen if some servers happen to be down, either by chance or by malicious 

intent. An attacker, for example, might bring down a server or series of servers in an 

attempt to hide his activity. 

In cases where the next server on an agent's itinerary was down prior to the start of 

its migration, the sending agent server also recognized the communication failure, 

notified the system administrator, and then routed the agent to the next server in its 

itinerary. In cases where multiple servers were down, the sending server keeps trying 

subsequent hosts in an agents itinerary until it finds one that is up. If the list of hosts is 

exhausted, agent servers send the agent back to the Agent Coordinator. In addition, the 
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Agent Coordinator, in all cases, detected when a host that was in the agent's itinerary 

was not visited and notified the system administrator. 

g.   Lost Agents 

This set of experiments involved testing the ability of the components in the system 

to detect when an agent is lost and the ability to recover from such a situation. Agents 

could be lost for a variety of reasons, including hardware or software failure of a host 

while an agent is executing, malicious destruction by an intruder, failure of some 

communication mechanism in the network, etc. Regardless of the reason, the system 

must be able to detect this situation and correct the problem. 

In these experiments, agents were subjected to loss through intentional malfeasance 

while they were migrating "in the wild". Agents were deleted from the system or 

hampered from future migrations in order to test the ability of the system to detect and 

correct this potential problem. In cases involving Level 1 or Level 2 agents, the Agent 

Coordinator detected that agents failed to report their activities after a short period of 

time. Following these detections, the Agent Coordinator issued a revive_request 

message to the last known server that was successfully visited by the missing agent. 

Once the agent was successfully revived and migrating effectively again, its progress 

continued to be monitored in case of future problems. In all test cases, it was not 

possible to delete an agent without the system quickly detected the problem. Similarly, 

Level 3 agents were intentionally deleted to test the system's ability to handle this 
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potential problem. In all cases, the Agent Coordinator notified the system administrator 

that missing agents had not returned within an expected amount of time. 

2.   Validating Intrusion Detection Functionality 

One method that is often used when validating software is to compare it with other 

comparable applications. In the case of this research, the comparisons that were done 

were limited for two primary reasons. First, this prototype has no real equivalences in 

that it was designed with its entire architecture based on mobile agents with security 

mechanisms designed to make this methodology viable. No other system is designed in 

this way. The second reason these comparisons to other existing systems was limited, is 

that it was not possible to obtain, nor test against, many of the other existing IDS 

systems. Many commercial systems are not freely available, nor do they attempt to do 

what this research does. This research is unique and hence can really only be tested 

against its intended purpose, thus limiting the significance of using other systems for 

comparison. 

In order to accomplish validation, however, a number of scenarios were developed 

which were designed to validate that the prototype does indeed protect its agents as well 

as detect intrusive behaviors in the intended manner. A comprehensive validation of the 

system's ability to detect intruders is impossible since it is not possible to know a priori 

all possible methods potential intruders can use to penetrate a system. Instead, the 

scenarios mimic common techniques used to break into system and imitate behaviors 

that are indicative of intrusive behavior. These scenarios are based on many of the most 
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common techniques used by intruders that are readily obtained from the existing 

literature on computer security and hacking (specific details provided in Appendix A). 

a.   Value Added of Mobile Agents 

The roaming agent paradigm provides the ability to detect some intrusive behaviors 

that are not identified by other host-based intrusion detection systems. For example, 

certain classes of distributed attacks can be identified by agents roaming the network in 

ways that other systems, because of their inherent design, cannot. In addition, the 

roaming agent paradigm allows for detection of intrusion attempts and other anomalous 

activities that might raise suspicion. The roaming agent paradigm also provides the 

ability to detect system vulnerabilities that might make the organization easier to attack. 

As a consequence, these agents serve the dual purpose of both helping prevent attacks 

through vulnerability assessment and of detecting attacks by finding intrusive behavior. 

The first class of attacks that roaming agents are uniquely designed to detect are 

system-wide "guessing" attacks, such as doorknob rattling. These attacks are a variant 

of common "guessing" attacks - those performed on a single computer that is connected 

to the Internet to see if it has any vulnerabilities that can be exploited. The objective of 

system-wide attacks, however, is to avoid detection by local host-based detection tools 

by spreading the probes out over multiple, independently monitored hosts. Because 

these attacks involve a small number of attempts, the intruder can evade detection by 

remaining below the threshold of detection on any given host. Even though these attacks 

may not register as attacks from the local host perspective, the overall organization may 
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indeed be under attack. These kinds of attacks are not detectable by existing host-based 

systems, as aggregation and correlation of activity from many different hosts is required. 

Since roaming agents are capable of analysis across multiple systems, however, this type 

of attack is easily detectable. 

To illustrate, consider a normal password guessing attack. A potential intruder 

attempts to guess the password for a given user multiple times on the same host, hoping 

to eventually find the correct input. If the intruder makes too many attempts, a host- 

based IDS will notice the repeated login failures and indicate a possible violation. If, 

however, the intruder attempts to guess passwords on many machines, while ensuring 

that the number of guesses always stays below the threshold for login failures on any one 

machine, the attack will go unnoticed by conventional security tools. Roaming agents 

allow this type of distributed attack to be recognized and detected. 

Mobile agents also provide the unique ability to detect system-wide vulnerability 

scanning, such as distributed port sweeps. While most host-based intrusion detection 

systems detect port sweeps on the individual host it is monitoring, the ability to detect 

sweeps below detectable thresholds occurring on multiple hosts can only be done when 

data is shared among hosts in the network. Roaming agents provide an effective 

mechanism with which to detect when potential intruders are scanning an organization's 

networks for possible weaknesses. 

As an example, TCP scans are typically detected by host-based intrusion detection 

systems when a large number of ports are scanned within a short period of time. These 

systems flag suspicious behavior when some minimum port threshold is indicated. That 
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is, these systems trigger when the number of connections to destination ports on the local 

machine being monitored exceeds the number of connections allowed by a single remote 

host. The problem with this technique is that a potential intruder can successfully scan a 

series of ports on multiple machines in a network, each of which is below the threshold 

for remote connections on any one machine. This gives the would-be attacker as much, 

if not more information, without ever triggering that a potential attack has ever taken 

place. Roaming agents, however, can detect these types of distributed scans by 

collecting and correlating information on scans from each host to detect whether a 

distributed scan has taken place. 

Detecting staged attacks is another unique capability of using mobile agents for 

intrusion detection. Staged attacks are attacks that take place in phases over time and 

may involve many different hosts. The recent distributed denial-of-service attacks such 

as Trinoo, Tribe Flood Network, and others are one form of such attacks. Typically, 

these attacks begin by the intruder gaining access to a legitimate account on one or more 

hosts. The intruder then installs additional tools to help him further the attack. Usually, 

a time bomb, daemon, or some other remotely controlled entity is created and is setup to 

wait for future commands. At some point in the future, possibly many month later, the 

attacker can initiate his attack by contacting these entities that were previously produced. 

If all of these steps were conducted on a single host or within a short span of time, 

conventional host-based intrusion detection systems could probably detect these attacks. 

Newer forms of these attacks, however, can be divided into phases over many hosts for 

longer periods of time, thus escaping detection by these systems. Using the roaming 
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agent paradigm, these forms of attacks can be detected because agents can correlate 

network-wide events that might indicate that one of these attacks has occurred. For 

example, a roaming agent could detect that a number of new daemons, all of which may 

have different names in order to evade detection, are listening to the same set of ports on 

multiple machines. 

In addition to all of these advantages, the roaming agent paradigm also allows the 

intrusion detection system to be tailored to new threats and vulnerabilities much faster 

and easier than traditional host-based systems. Because new agents can be quickly 

written when recently discovered vulnerabilities are published, organizations using this 

paradigm can be protected faster than those that rely on commercial production of new 

patches and detection signatures, many of which take months to be published, 

distributed, and installed. This is a critical advantage, because most attackers exploit 

recently discovered vulnerabilities knowing that most systems have already been 

hardened against older ones. Vigilant system administrators can move to rapidly 

implement new security measures by creating or altering mobile agents to reduce the 

window of vulnerability from these attacks. 

b.   Comparison to Other Systems 

As mentioned earlier, the validation of this system, particularly the efficacy of the 

roaming agent paradigm in detecting intrusions, posed a few challenges. Because no 

comparable systems exist, comparisons were made against other host-based intrusion 

detection systems that are representative of the current state of IDS technology. Table 6 
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Table 6: Systems used for validation. 

Psionic HostSentry (Psionic Software, Inc.) [87] 
Psionic PortSentry (Psionic Software, Inc.) [88] 
Psionic LogCheck (Psionic Software, Inc.) [89] 
LIDS (Linux Intrusion Detection System) [90] 
Openwall Project IDS [91] 
NetSaint Network Monitor [92] 

lists the systems that were obtained and tested. In addition to those that were actually 

acquired for testing, several other systems were considered and their architectures were 

analyzed from publicly available literature, but were not acquired because they are 

commercial products that require a fee. These systems are listed in Table 7. 

Because the prototype for this research was built to show the feasibility and value of 

the roaming agent paradigm to intrusion detection, it does not provide complete 

coverage for every conceivable security vulnerability. Were this approach to be 

implemented as a commercial product, many more agents would undoubtedly be written 

to provide detection for all currently known intrusive behaviors. Hence, the validation 

of the system to ensure that the design of the system solves the desired problem is 

intended to show the additional value and functionality that secure, roaming agents 

provide over that of current host-based intrusion detection systems. 

It is instructive to briefly describe the systems used to help validate this prototype. 

Psionic Software, Inc. is an Austin-based computer security company. Three of their 

key products, HostSentry, PortSentry, and LogCheck are designed to work together to 
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Table 7: Commercial security products. 

CyberCop Monitor (Network Associates, Inc.) [93] 
Dragon Sensor (Network Security Wizards, Inc.) [94] 
Dragon Squire (Network Security Wizards, Inc.) [95] 
Patriot IDS (Patriot Technologies, Inc.) [96] 
PreCis Security Toolkit (PRC, Inc.) [97] 
Sygate Enterprise Network (Sygate Technologies, Inc.) [98] 

provide better coverage of potential vulnerabilities [87]. These tools are host-based 

intrusion detection and vulnerability assessment products that look for problems for the 

host on which the reside. 

HostSentry [87] is the intrusion detection component that primarily checks for login 

anomalies. By monitoring interactive login sessions to the host, it can detect unusual 

activity that might be indicative of intrusive behavior. While this function is beneficial 

for the host it is running on, HostSentry does not interact with other hosts to detect more 

sophisticated distributed attacks. 

PortSentry [87] is the Psionic component designed to detect and respond to port scans 

against the host. This function is essential for detecting actual attacks or precursors to 

attacks that often occur when potential intruders are gathering information. Like 

HostSentry, PortSentry is a great product that does a good job detecting problems at a 

single host. However, this product has no capability of interacting with other hosts to 

detect more sophisticated forms for this attack. 
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Logcheck [87] is the final component to Psionic's software suite that provides the 

ability to process UNIX log files generated by the other components. In addition, 

LogCheck does a good job at detecting a variety of other operating system specific 

violations and other out of the ordinary system events. While LogCheck uses the email 

system to send reports to system administrators about the logs for the host on which it 

resides, it provides no mechanism to examine log files across hosts. 

LIDS (Linux Intrusion Detection System) [90] is an intrusion detection system that is 

built into the Linux kernel and is installed as a patch. It was designed to implement 

those security features that are not part of the native Linux kernel, such as mandatory 

access control, port scan detection, and some forms of file protection. Because these 

features are added into the kernel, it makes turning these mechanisms off much more 

difficult for the potential intruder. While LIDS does an excellent job in hardening the 

security tools for a single host, it does not provide mechanisms to detect intrusive 

behaviors across hosts and thus misses many of the new, more advanced attacks. In 

addition, because the tools are built into the kernel, any changes to the security 

applications must involve a rebuild of the kernel on each system. This would be 

unacceptable for large organizations that intend to stay up-to-date on protecting their 

systems from newly discovered vulnerabilities. 

Openwall [91] is similar to LIDS, in that it provides a series of patches to the 

standard operating system kernel. Openwall and LIDS are compatible, however, and can 

coexist. Openwall provides an additional set of intrusion detection tools, such as the 

ability to detect some forms of buffer overflow attacks, data spoofing attacks, and denial 
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of service attacks. While these improvements are good, Openwall suffers from the same 

problems as LIDS: it is unable to detect distributed attacks and requires changes to the 

kernel in order to be effective. Openwall and LIDS used in conjunction are very 

effective at hardening individual hosts, but do nothing to detect attacks across hosts in an 

organization. 

NetSaint Network Monitor is a program [92] designed to monitor hosts and services 

on a network. It was written and designed to operate primarily on most Unix/Linux 

based platforms and can execute as a daemon to periodically run checks on user 

specified activities. NetSaint was designed primarily to monitor network services (such 

as SMTP, POP3, HTTP, etc.) and host resources (i.e. processor load, disk usage, etc.), 

although it can be expanded to check for other user-developed problems using a plugin 

interface. As with the other systems mentioned, NetSaint does an excellent job in 

monitoring the hosts on which it is running. It is not capable, however, of sharing and 

correlating distributed attacks such as password guessing and network-wide port 

scanning. 

The first set of scenarios for validation were designed to illustrate the ability of the 

prototype of detect distributed "guessing" attacks that other conventional host-based 

tools could not. In these scenarios, a potential intruder attempted to guess the password 

for a given user one or two times on many different hosts on the network. Care was 

taken to ensure that the simulated intruder did not make too many attempts on any one 

host, in order to prevent the conventional host-based systems from detecting the repeated 

login failures on a single host which is indicative of a possible violation. Fabricated 
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usernames and passwords were used so as not to interfere with real users on the system. 

In all test cases (see Appendix A), the roaming agent prototype detected these distributed 

"guessing" attacks and notified the system administrator of the problem. None of the 

other security tools that were tested detected this type of attack and were limited to 

single host notifications only. 

Mobile agents also provide the unique ability to detect system-wide vulnerability 

scanning, such as distributed port sweeps. The next set of tests were designed to show 

that the prototype could detect these types of attack and that the other security tools 

could not. In these attacks, a variety of different ports were swept across several hosts. 

In cases where these TCP scans attempt to open a large number of ports on a single host, 

all of the security tools capable of detecting port sweeps detected that a port sweep 

occurred on that host. In cases where the number of sweeps was low and occurred on 

multiple hosts in the network, only the roaming agents provided an effective mechanism 

with which to detect these attacks. Because the other tools did not record, nor share 

incidents with other hosts of "trivial" port sweeps, they were incapable of detecting these 

attacks. 

Using mobile agents in a roaming paradigm also provides the ability to detect 

interesting behaviors across hosts that may be indicative of intrusion, including forms of 

staged attacks. To test this ability, a number of dummy daemons were created and 

brought up on various hosts in the network. These daemons were given different names, 

but were all listening on the same port. The daemons mimicked possible zombies that 

many distributed denial-of-service tools use in early stages of an attack. By examining 
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the running processes on each host, along with the network statistics for each host's 

ports, the prototype was able to detect that a possible problem existed on several 

machines in the network. By correlating the port numbers rather than the daemon 

names, the agents detected that new daemons were listening where none had been 

previously detected. None of the conventional systems could detect this type of attack. 

In addition, tests were run to detect unusual resource usage across hosts in the 

network, indicative of a possible problem. While increased resource usage, such as 

enlarged CPU utilization on a single host, would not usually be anything out of the 

ordinary, if many systems in a network suddenly have increased usage that is sustained 

for a period of time, it might indicate that something is wrong. Reports have surfaced in 

the past of unauthorized employees farming out processing to many different machines 

in his organization for his own purposes, in essence stealing CPU cycles. Unless 

detection of this activity is shared across hosts, it is impossible to know that a problem 

exists. By starting a series of mathematically intensive dummy programs on each host, 

the CPU utilization was decreased for each machine. The prototype detected such 

problems by using agents to gather performance and resource usage statistics from many 

hosts and correlating the results with the IDS Analysis Engine. Using previous and 

current data, the prototype detected that a trend existed across hosts and notified the 

system administrator. None of the other systems detected this form of attack. Table 8 

indicates how many tests were performed to validate the value-added functions provided 

by this approach. Details of each test are given in Appendix A. 



105 

In addition to all of these advantages, the roaming agent paradigm also allows the 

intrusion detection system to be tailored to new threats and vulnerabilities much faster 

and easier than traditional host-based systems. Adding or modifying agents is relatively 

simple. In comparison, all of the other tools examined often require very tedious 

routines to install new modules or rules to look for recently discovered vulnerabilities. 

In addition, many of the existing systems require changes to the operating system kernel 

on each machine. Most of the commercial systems require patches to be installed 

periodically, sometimes with long periods between update availability. This is an 

obvious disadvantage to the conventional approach. 

Table 8: Number of intrusion detection validation experiments performed. 

Guessing Attacks 24 
Vulnerability Scanning 24 
Staged Attacks 20 
Resource Usage 10 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A. Summary 

The purpose of this research was to develop a methodology for protecting mobile 

agents in intrusion detection systems and to demonstrate the ability of such agents to 

address the shortcomings in current agent-based, host-based EDSs. This methodology 

supports the defense of computer systems through a secure, mobile agent-based 

architecture. 

The first step in conducting this research was to complete a literature survey to 

investigate previous research in mobile agents, computer security, and intrusion 

detection systems. From this survey, a new approach and methodology based on secure 

mobile agents was developed to address the limitations in these other systems. After the 

design of the system architecture was developed, a prototype was built to demonstrate 

the viability of this proposed approach. Finally, the implementation was verified and 

validated. 

Mobile agents offer several advantages over conventional client-server and peer-to- 

peer paradigms. When implemented correctly, they reduce the overall communication 

traffic in the network. Since the code that makes up the functionality of a mobile agent 

is generally much smaller than the data to be operated on, transporting the agent rather 

than the data greatly reduces the communications load among hosts on the network. In 

addition, mobile agents allow users to quickly create specialized services by tailoring 
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agents to a specific vulnerability or threat. Such customization is a major asset provided 

by code mobility because re-tailored agents can be designed to perform new functions 

rather quickly using existing agents for the basic framework. 

Mobile agents offer several advantages when used in the intrusion detection domain 

over conventional host-based methods. Because agents are more easily tailored, they 

can be quickly added or changed to observe new host behaviors. As new intrusive 

indicators or vulnerabilities are discovered, new agents can be written and dispatched to 

look for these problems on network hosts. In addition, agents can be very efficient if 

they are written to be simple and to consume as few system resources as possible. These 

agents can impose a lower overhead on network bandwidth and other resources than can 

some of the current, more centralized approaches to intrusion detection. Intrusion 

detection systems using mobile agents are more fault tolerant in that the components that 

makeup the system are moving and are not centrally located. The failure of a host does 

not necessarily interfere with a mobile agent. This makes such systems more resilient to 

subversion. A final advantage of using mobile agents in this domain is that they scale 

well to larger systems. As the size and demands of a network grow larger, more agents 

can be added to migrate through hosts looking for intrusive indicators. 

Even though using mobile agents for intrusion detection offers many benefits over 

traditional approaches, the major obstacle of providing adequate security for the agents 

and the infrastructure must be eliminated before these systems can be deployed in real 

settings. The largest hurdle to a real-world implementation of such an agent-based 

system is this: agents and hosts cannot trust each other. In addition, if a host is 
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penetrated and the attacker gains access to an agent, he may gain access to information 

that will help him attack other hosts in the network and further penetrate the system. If 

an attacker can obtain detailed knowledge of the detection systems installed at a 

particular site, he will be better able to avoid its triggers; thus, it would be better to 

deploy an IDS whose triggers are not easily analyzable. Hence, security for these agents 

is critical. 

This research solves these many problems by ensuring agent confidentiality, integrity, 

and availability through a variety of methods. In addition, the problem of mutual 

suspicion is solved since agents and hosts can verify the authenticity and origin of each 

component in the system. The confidentiality of mobile agent code and data is protected 

during migrations between hosts. The integrity of mobile agent code is monitored so 

that any changes to an agent will be detected. The integrity and confidentiality of data 

collected during an agent's lifetime are ensured so that subsequent hosts cannot view this 

data or make changes without detection. Unauthorized changes to an agent's itinerary 

are detected. Finally, agents are protected from denial-of-service attacks. 

B. Conclusions and Significance of Research 

The implemented prototype shows that this methodology is sound and feasible. The 

implementation demonstrates several features that are unique compared with other host- 

based intrusion detection systems. The principle contribution of this research is to 

provide a methodology for protecting mobile agents in intrusion detection systems and 

to demonstrate the ability of such agents to address the shortcomings in current host- 
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based IDSs. This methodology supports the defense of computer systems through a 

secure, mobile agent-based architecture. The following issues were addressed by this 

research: 

• Integrated mechanisms can be applied for securing mobile agents in intrusion 

detection systems that ensure agent confidentiality and integrity through the use 

of cryptographic and other methods. The confidentiality of mobile agent code 

and data is protected during migration between hosts. The integrity of mobile 

agent code is monitored so that any changes to an agent will be detected. The 

integrity and confidentiality of data collected during an agent's lifetime is 

ensured so that subsequent hosts cannot view this data or make changes without 

detection. In addition, unauthorized changes to an agent's itinerary are detected. 

Authentication of both agents and hosts is provided to prevent spoofing. 

• Mechanisms can be applied for securing mobile agents in intrusion detection 

systems that ensure agent availability. Mobile agents can be protected from 

denial-of-service attacks. Malicious or malfunctioning hosts that attempt to 

remove or suspend agents can be detected. Various hold-back, persistence, and 

other techniques can ensure that when agents are removed from the system by 

anyone other than the originator, it will be detected. 

• The roaming agent paradigm provides the ability to detect intrusive behaviors 

that are not identified by other host-based intrusion detection systems. Certain 

classes of distributed attacks, including common threats such as doorknob 
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rattling, can be identified by agents roaming the network in ways that other 

systems, because of their inherent design, cannot. 

• The roaming agent paradigm allows the intrusion detection system to be tailored 

to new threats and vulnerabilities much faster and easier than traditional host- 

based systems. This provides a mechanism to quickly add new detection and 

defense components to a system as soon as vulnerabilities are discovered, rather 

than having to wait for weeks before new patches or rule sets are produced by the 

tool's designer. 

• Using secure mobile agents provides a scalable solution to intrusion detection. 

As the size of an organization's network grows, additional agents can be 

deployed to provide extended coverage. 

• Secure mobile agents provide platform independence. Agents can run in 

heterogeneous environments without having to be rewritten for any particular 

hardware or operating system configuration. 

C. Recommendations for Future Work 

The prototype implemented for this research was never intended to be used "as is" in 

a real world application. While the implementation fully addresses the goals established 

at the beginning of this research, any project of this size has many areas that can be the 

subject of further and continuing research. Because the prototype was written solely as a 

demonstration of the feasibility of this research, a large amount of work would be 

required before it could be deployed as a real world application. A commercial 
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realization of this research would require large monetary and personnel commitments, 

and would probably take several man-years to complete. 

1. Agent Coordinator 

The first area that could benefit from future work is the Agent Coordinator. The user 

interface to the Agent Coordinator could be written to be more user-friendly. While 

more than adequate for this prototype, standardizing the interactions with the system to 

conform to what most user's expect from a commercial product would be helpful. For 

example, by adding right-click popup menus, the user could do in one step what now 

takes several mouse clicks. In addition, adding features such as drag and drop and color 

highlighting might make the interface easier to use. 

In addition to these cosmetic changes, several functional changes could be made to 

the implementation in order to allow multiple, redundant agent coordinators to coexist in 

the system at the same time. These redundant agent coordinators would provide 

redundancy in case of failure and would create additional components for an intruder to 

defeat in order to be successful. The problem of a central point of failure would be 

eliminated, but some care would have to be taken to ensure that the agent coordinators 

coordinate among themselves to prevent them from duplicating efforts. 

2. IDS Analysis Engine 

The IDS Analysis Engine written for this research is able to analyze a small variety of 

possible intrusive indicators. This is sufficient to show the viability for the proposed 
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research methodology, but in a real-world manifestation, the IDS Analysis Engine would 

need to have many more modules capable of analyzing a much wider variety of activity. 

In addition, a richer rule set should be provided to supplement these modules in order to 

expand the coverage of protection offered by this system. 

In order to make the system easier to use, the functionality of the IDS Analysis 

Engine could be integrated into the Agent Coordinator. This would provide just one user 

interface for the system administrator to learn and use in order to operate and monitor 

the system. Care must be taken, however, to leave hooks available for additional 

modules to be added to the analysis engine so that it remains expandable. 

3.   Integrated Log Analysis Tool 

A system such as the one proposed in this research is not intended to be used in 

isolation. In a real-world environment, many security tools would be running in 

conjunction with the roaming agent system to provide coverage for an entire 

organization's infrastructure. In addition to other forms of intrusion detection, such as 

host-based or network-based tools, vulnerability analyzers, port scanners, and other tools 

would also be used. It would be ideal if an integrated log analysis tool could be 

developed that could take inputs from these varied security tools and perform analyses. 

The advantages of such a tool are numerous. First, a centralized analysis engine 

would obviate the need for many different tools doing much of the same thing. In 

addition, analyzing outputs from many different tools could provide indicators of 

security problems that analyses from these outputs in isolation might not provide. 
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Before such a tool could be developed, however, the problem of resolving the many 

differing formats from all of these tools must be adequately addressed. This problem 

alone makes this a difficult proposition. 

4.   Mobile Agents 

Several different types of mobile agents were written to demonstrate the feasibility of 

this research. While this was sufficient for the prototype, many additional agents need to 

be written to examine a much broader category of intrusive behavior. The task of simply 

writing an agent to find a published vulnerability is easy, but doing so for all of the many 

security vulnerabilities that exist will take some time. In addition, the rule sets for the 

IDS Analysis Engine will need to be updated for every new agent that is written. 

In addition to adding more agents to the system, some interesting research could be 

done in the basic functionality of the agents themselves. It would be interesting to see 

what benefits could be obtained by integrating artificial intelligence algorithms and 

techniques into the agents. Rather than simply being reflexive, agents could be outfitted 

with goal-based or utility-based algorithms in making decisions about what data to 

collect or which hosts to visit. In addition, agents could be equipped with basic planning 

or reasoning capabilities in order to make decisions on their own. Research into 

providing agents with learning and adaptation capabilities would also be very 

interesting. 
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5.   Agent Servers 

Agent servers provide the basic mechanisms that allow agents to migrate and execute 

on hosts in the network. It might improve the functionality of the entire system if agent 

servers had some additional capabilities. For example, if agent servers could place 

restrictions on the number of resources on its host that could be used by agents, they 

could ensure that no one host is ever overloaded with too many agents. This would also 

allow servers to restrict the number of agents attempting to migrate to the host and 

restrict the number of agents executing at any given time. Research has already been 

done in this area, but the functionality would have to be added to this system to 

determine what impact it might have on the implementation. 

In addition, it would make the system more flexible if the system administrator could 

choose one of several encryption protocols to use in protecting agents as they migrate 

from server to server. Currently, the RS A public-key cryptosystem is the only supported 

protocol. Giving the user more options, such as using the new AES cryptosystem, would 

provide application compatibility and ensure expandability in the future as new 

encryption algorithms are developed. 

Likewise, the current implementation could be made more expandable by providing 

hooks to link new digital signature and hash function routines as options for the system 

administrator. Currently, the system uses SHA-1 as the only algorithm for generating 

hash codes. Adding the availability of other functions, such as MD4, MD5, or RIPEMD, 

would give the user greater flexibility in configuring the system for an organization's 

particular network. 
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6.   Agent Communication 

Communication between components in this system was done using XML. Several 

types of XML formatted messages were defined in order to describe the communication 

protocol. In addition to these messages, additional message formats could be developed 

in the future that provide a richer set of exchanges. XML was designed to be extensible, 

allowing new communication tags to be defined as needed to enlarge the universe of 

things that can be described. 
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APPENDIX A 

VERIFICATION AND VALIDATION DETAILS 

Verification Experiments 

To verify correct implementation of design for mobile agents, the following actions 
were taken for each mobile agent written: 

InetAgent 
LoginAgent 
MFAgent 
ProgAgent 
PSAgent 
NullAgent 
Test Agent 1 
TestAgent2 
TestAgent3 

This test involved loading the agent into the Agent Coordinator and setting its itinerary 
to the following: canary, dove, hansolo, jabba. Each agent was dispatched into the 
network, with each agent server set to debug output mode. The sequence of hops was 
compared against the following: 

1 - arrival at canary 
2 - arrival at dove 
3 - arrival at hansolo 
4 - return to Agent Coordinator (jabba) 

Upon return, the payloads of each agent was analyzed against known results as follows: 

InetAgent - contents of inetd.conf 
LoginAgent - failed login attempts for each machine 
MFAgent - malicious files intentionally placed on each machine (Trinoo, Tribal Flood, 
etc) as triggers 
ProgAgent - detection of triggers - unauthorized executing programs (i.e. tftp) 
PSAgent - list of currently executing processes 
NullAgent - no payload 
Test Agent 1 - test file on each host for Test Agent 1 as trigger 
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TestAgent2 - test file on each host for TestAgent2 
TestAgent3 - test file on each host for TestAgent3 

To verify correct implementation of design for the IDS Analysis Engine, the following 
actions were taken for each mobile agent written: 

InetAgent 
LoginAgent 
MFAgent 
ProgAgent 
PSAgent 
NullAgent 

This test involved loading the agent into the Agent Coordinator with a predetermined 
itinerary. Each agent was dispatched into the network, with each agent server set to 
debug output mode. Upon return, the IDS Analysis Engine was observed for each agent 
as follows: 

InetAgent - Warning! sprayd daemon running on (host name) for each host 
LoginAgent - Warning! Possible Doorknob rattling by user: (username) on (host names) 
MFAgent - Trinoo Denial-of-service shell found on (host name) 
Possible Trinoo master located on (host name) 
Possible Trinoo client daemon located on (host name) 
Possible Tribal Flood client located on (host name) 
Warning! Possible Tribal Flood daemon localed on (host name) 
ProgAgent - Warning! tftp running on (host name) 
PSAgent - Warning! TFTP daemon running on (host name) 
Warning! dmispd daemon — DoS vulnerability - running on (host name) 
NullAgent - no output 

Sprayd was executing on each host in the network. A bogus username bill was 
attempted with guessed passwords on canary, dove, and hansolo. Trinoo and Tribal 
Flood shells were installed on canary and dove. TFTP was executed on hansolo. The 
dmispd daemon was executing on each host. 

To verify correct implementation of design for the Agent Coordinator, the following 
actions were taken for each agent: 

InetAgent - automatic timer set for 15 seconds 
LoginAgent - automatic timer set for 30 seconds 
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MFAgent - automatic timer set for 1 minute 
ProgAgent - automatic timer set for 5 minutes 
PS Agent - automatic timer set for 15 minutes 
NullAgent - automatic timer set for 1 hour 

This test involved loading the agent into the Agent Coordinator with a predetermined 
itinerary. Each agent had a timer set for automatic dispatch into the network. The Agent 
Coordinator was observed to see if the timers worked correctly in each case for the time 
set. In addition, to these tests, the monitoring function of the Agent Coordinator was 
tested for each agent as follows (each with an itinerary of canary, dove, hansolo): 

InetAgent - server on canary was stopped prior to dispatch 
LoginAgent - server on dove was stopped prior to dispatch 
MF Agent - server on hansolo was stopped prior to dispatch 
ProgAgent - server on canary was stopped while executing ProgAgent 
PS Agent - server on dove was stopped while executing PS Agent 
NullAgent - server on hansolo was stopped while executing NullAgent 

In all cases, agents automatically routed around servers that were stopped before they 
arrived. In the cases where agents were stopped while executing, the Agent Coordinator 
successfully notified the last known server to successfully host the agent and revive it to 
continue to the next host in the itinerary. 

To verify correct implementation of design for the Agent Servers, the following actions 
were taken for each server and each agent: 

InetAgent 
LoginAgent 
MFAgent 
ProgAgent 
PSAgent 
NullAgent 

Agent servers were placed in debug mode to observe their behavior as agents arrived, 
executed, and departed. In addition, stream sniffers were placed on the incoming and 
outgoing links for each server to observe the state of agents in transition. Finally, the 
persistent stores were observed to see if servers were successfully saving and restoring 
agents. 
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Validation of Agent Security 

Modifying Agent Itineraries 

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo, 
and jabba. To test, each of the following agents were subjected to modifications of their 
itineraries as follows: 

InetAgent - the host parrot was inserted into the itinerary 
LoginAgent - the host dove was removed from the itinerary 
MFAgent - the entire itinerary was deleted 
ProgAgent - the itinerary was rearranged as hansolo, dove, canary, jabba 
PSAgent - a random modification was made to the itinerary (by displacing one byte) 
In an additional set of tests, the itineraries were changed as follows, but the digital 
signature for the itinerary was also changed: 

InetAgent - the host parrot was inserted into the itinerary 
LoginAgent - the host dove was removed from the itinerary 
MF Agent - the entire itinerary was deleted 
ProgAgent - the itinerary was rearranged as hansolo, dove, canary, jabba 
PSAgent - a random modification was made to the itinerary (by displacing one byte) 

In both sets of experiments, the modifications were made at each of the following 
locations for each agent: 

Between the Agent Coordinator and canary 
Between canary and dove 
Between dove and hansolo 
Between hansolo and jabba (Agent Coordinator) 

Modifying Agent Payloads 

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo, 
and jabba. To test, each of the following agents were subjected to modifications of their 
payloads as follows: 

InetAgent - the canary payload was modified 
LoginAgent - the dove payload was deleted 
MF Agent - the entire payload was deleted 
ProgAgent - the payload was rearranged as hansolo, dove, canary, jabba 
PSAgent - a random modification was made to the payload (by displacing one byte) 
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In an additional set of tests, the payloads as before, but the digital signature for the 
payload was also changed. In both sets of experiments, the modifications were made at 
each of the following locations for each agent: 

Between the Agent Coordinator and canary 
Between canary and dove 
Between dove and hansolo 
Between hansolo and j abba (Agent Coordinator) 

Modifying Agent Code 

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo, 
and jabba. To test, each of the following agents were subjected to modifications of their 
code as follows: 

InetAgent - a new go() method was added to the agent 
LoginAgent - one line was added to the go() method 
MFAgent - a line was removed from the go() method 
ProgAgent - the go() method was deleted 
PS Agent - a random modification was made to the code (by displacing one byte) 

In an additional set of tests, the code was changed as follows, but the digital signature 
for the code was also changed: 

InetAgent - a new go() method was added to the agent 
LoginAgent - one line was added to the go() method 
MF Agent - a line was removed from the go() method 
ProgAgent - the go() method was deleted 
PSAgent - a random modification was made to the code (by displacing one byte) 

In both sets of experiments, the modifications were made at each of the following 
locations for each agent: 

Between the Agent Coordinator and canary 
Between canary and dove 
Between dove and hansolo 
Between hansolo and jabba (Agent Coordinator) 
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Compromising Agent Confidentiality 

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo, 
and j abba. To test, each of the following agents were sniffed in the following locations 
during migration, both using encryption and without: 

InetAgent 
LoginAgent 
MFAgent 
ProgAgent 
PSAgent 

Between the Agent Coordinator and canary 
Between canary and dove 
Between dove and hansolo 
Between hansolo and j abba (Agent Coordinator) 

Introducing False Agents 

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo, 
and j abba. To test, each of the following false agents were manually dispatched in the 
following locations: 

Test Agent 1 
TestAgent2 
TestAgent3 

From the Agent Coordinator and canary 
From canary to dove 
From dove to hansolo 
From hansolo to jabba (Agent Coordinator) 

Dealing with Faulty Servers 

The following actions were taken for each agent with a preloaded itinerary of canary, 
dove, hansolo, and jabba: 

InetAgent 
LoginAgent 
MFAgent 
ProgAgent 
PSAgent 
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NullAgent 

Agent servers were placed in debug mode to observe their behavior as agents arrived, 
executed, and departed. In addition, stream sniffers were placed on the incoming and 
outgoing links for each server to observe the state of agents in transition. The following 
servers were intentionally shutdown for each agent for each run: 

Canary 
Dove 
Hansolo 

Lost Agents 

The following actions were taken for each agent with an itinerary of canary, dove, 
hansolo, andjabba: 

InetAgent - Level 1 
LoginAgent - Level 3 
MFAgent - Level 2 
ProgAgent - Level 1 
PSAgent - Level 3 
NullAgent - Level 2 

On each test run, the agent was dispatched and the following servers were brought down 
in the following order on each pass as they were executing the agent: 

Canary 
Dove 
Hansolo 

Validation of Intrusion Detection Functionality 

Value-Added Validation 

To test the value-added of distributed "guessing" attacks, LoginAgent was altered to 
retrieve as payload all failed logins on each host visited within a specified time interval. 
The following was completed: 

Canary - attempted failed login twice with username bill and guessed password 
Dove - attempted failed login once with username bill and guessed password 
Parrot - no attempted logins 
Hawk - no attempted logins 
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Hansolo - attempted failed login once with username bill and guessed password 

This was run twelve times, each time resetting the simulated loginlog. 

In addition, the following was completed: 

Canary - attempted failed login once with username John and guessed password 
Dove - attempted failed login once with username John and guessed password 
Parrot - no attempted logins 
Hawk - attempted failed login once with username John and guesses password 
Hansolo - no attempted logins 

This too was run twelve times, run both with manual resets of loginlog and without. 

To test the value-added of distributed scanning attacks, a ScanAgent was written to 
retrieve low-level scans below a specified threshold on each host visited within a 
specified time interval. This process was aided by modified scanlogd output. All 
connections were logged to file that were collected by the agent. Correlations between 
connection made from the same source within a specified amount of time were 
considered suspicious. The file contents were simulated for testing purposes for control 
after verifying the process worked in a non-simulated environment. The following was 
completed: 

Canary - single scan on port 10001 from j abba 
Dove - single scan on port 10001 from jabba 
Parrot - no scan attempts 
Hawk - no scan attempts 
Hansolo - single scan on port 10001 from jabba 

This was run twelve times, each time resetting the simulated scan file. 

In addition, the following was completed: 

Canary - single scan on port 10001 & 12001 from jabba 
Dove - single scan on port 10001 from jabba 
Parrot - single scan on 12001 
Hawk - no scan attempts 
Hansolo - single scan on port 10001 & 12001 from jabba 

This too was run twelve times, both with manual resets of the scan log file and without. 
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To test the value-added of staged attacks, MFAgent was altered to look for program 
files installed in special locations, indicative of several staged denial-of-service attacks. 
The following files were planted as follows: 

Canary - trin.sh 
Dove - no files 
Parrot - trib.c 
Hawk - no files 
Hansolo - td.c 

This was run ten times. 

In addition, the following was completed: 

Canary - no files 
Dove - master.c 
Parrot - no files 
Hawk - ns.c 
Hansolo - no files 

This was run ten times. 

To test the value-added of resource usage attacks, ResourceAgent was written to 
periodically measure the CPU usage for each host in the itinerary. By comparing results 
to those gathered earlier, possible trends can be discovered. For this test, the following 
hosts were measured before and after several programs were started to use CPU time: 

Canary - no CPU processes 
Dove - CPU processes 
Parrot - CPU processes 
Hawk - no CPU processes 
Hansolo - CPU processes 

This was run ten times, each time measuring current CPU usage statistics. 
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APPENDIX B 

SOURCE CODE 

All the source code for the secure mobile agents prototype is provided on the 

accompanying compact disk. The compact disk was written as a standard computer data 

disk which should be readable on any computer. All utilities written or used specifically 

for this research are also included. All source code was written in Java 2.0. This code is 

readable in any standard text editor or Java development environment. 
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